
Università Ca’ Foscari Venezia
Department of Environmental Sciences, Informatics and Statistics

Doctoral Degree
in Computer Science

36th cycle

Effective, Efficient, and Robust Learning
Algorithms for Ranking and Classification

A thesis submitted in fulfilment of the requirements for
the degree of Doctor of Philosophy

Supervisor
Prof. Claudio Lucchese

Graduand
Federico Marcuzzi
Matriculation number: 853770

Academic Year
2022/2023

2

Contents

1 Introduction 11
1.1 Contributions of This Thesis . 13
1.2 Thesis Structure . 17

2 Basic Notions 19
2.1 Machine Learning . 19

2.1.1 Supervised Learning . 20
2.1.2 Decision Trees . 21

2.2 Ensemble Methods . 23
2.2.1 Random Forest . 24
2.2.2 Gradient Boosted Decision Trees 25

2.3 Summary . 28

I Effective and Efficient Ranking Algorithms 29

3 Background and State of the Art 31
3.1 Information Retrieval . 31
3.2 Learning to Rank . 32

3.2.1 Formal Definition . 33
3.2.2 Evaluation Metrics . 34

3.2.2.1 Normalized Discounted Cumulative Gain 35
3.2.3 Learning Algorithms . 36

3.2.3.1 Effectiveness . 37
3.2.3.2 Efficiency . 39
3.2.3.3 Fairness . 40

3.2.4 Benchmark Datasets . 40
3.3 Summary . 44

4 Surrender on Outliers and Rank 45
4.1 Related Work: Outliers . 46

3

4 CONTENTS

4.2 Contribution 1: Consistent Outliers in LtR 48
4.3 Contribution 2: SOUR Learning Algorithm 50
4.4 Experimental Setup . 52

4.4.1 Baselines and Implementation 53
4.5 Main Results . 54

4.5.1 Effectiveness . 54
4.6 In-Depth Analysis . 56

4.6.1 Hyperparameter Analysis 57
4.6.2 Model-based vs. Data-based Outliers 59
4.6.3 Data Removal vs. Data Augmentation 60
4.6.4 Per Query Class Performance 61
4.6.5 Outliers Effect on Model Weights 63
4.6.6 Consistent vs. Frequent Outliers 66
4.6.7 Removing vs. Exploiting Outliers 67
4.6.8 Robustness to Outlier Frequency 68

4.7 Summary . 71
4.7.1 Future Work . 72

5 On the Effect of Low-Ranked Documents 73
5.1 Related Work: Sampling Strategies 75
5.2 Selective Gradient Boosting . 76
5.3 Contribution: A New Sampling Function 78
5.4 Experimental Setup . 80

5.4.1 Baselines and Implementation 80
5.5 Main Results . 81

5.5.1 Effectiveness . 81
5.5.2 Efficiency . 83

5.6 In-Depth Analysis . 85
5.6.1 Hyperparameter Analysis 85
5.6.2 The Impact of the Lowest Ranked Documents 88

5.7 Summary . 91
5.7.1 Future Work . 92

6 LambdaRank Gradients are Incoherent 93
6.1 Related Work: IR Metrics Optimisation 95
6.2 LambdaRank . 96

6.2.1 Lambda Loss Framework . 98
6.2.2 Truncated Metric Optimisation 99

6.3 Contribution 1: Gradient Incoherency 100
6.3.1 On Truncated Optimisation 100
6.3.2 On Un-truncated Optimisation 103

CONTENTS 5

6.4 Contribution 2: Lambda-eX . 104
6.4.1 Main Idea . 104
6.4.2 Selection Strategies . 106

6.5 Experimental Setup . 107
6.5.1 Baselines and Implementation 108

6.6 Main Results . 110
6.6.1 Effectiveness . 110
6.6.2 Efficiency . 113

6.7 In-Depth Analysis . 115
6.7.1 Hyperparameter Analysis 115
6.7.2 Incoherency Reduction . 115

6.8 Summary . 118
6.8.1 Future Work . 119

7 Discussion First Part 121

II Robust Learning Algorithms for Classification 125

8 Background and State of the Art 127
8.1 Adversarial Machine Learning . 127

8.1.1 Attack Taxonomy . 128
8.1.2 Adversary’s Model . 130

8.1.2.1 Adversary’s Goal 130
8.1.2.2 Adversary’s Knowledge 130
8.1.2.3 Adversary’s Capability 132
8.1.2.4 Adversary’s Strategy 132

8.1.3 Threat Model . 133
8.1.4 Type of Attack . 133

8.2 Evasion Attacks . 134
8.2.1 Formal Definition . 135

8.2.1.1 Binary Evasion Attacks 136
8.2.1.2 Multiclass Evasion Attacks 137

8.2.2 Common Adversary’s Constraints 139
8.2.3 Evaluation Metrics . 140

8.2.3.1 Accuracy . 141
8.2.3.2 Stability . 141
8.2.3.3 Robustness . 141

8.2.4 Countermeasures to Evasion Attacks 142
8.2.4.1 Adversarial Robustness Enhancement 143
8.2.4.2 Certified and Verifiable Model Robustness 144

6 CONTENTS

8.2.5 Benchmark Datasets . 146
8.3 Summary . 150

9 Feature Partitioned Forests 151
9.1 Related Work: Robust Training . 153
9.2 Threat and Adversary’s Model . 155
9.3 Contribution 1: Feature-Partitioned Forest 156

9.3.1 Robust Feature Partitioning 157
9.3.2 Robust Forest Ensembling 157
9.3.3 Improve Model Accuracy and Robustness 158

9.4 Contribution 2: Robustness Certifiers 160
9.4.1 Brute Force Robustness Verifier 161
9.4.2 Feature-Partitioned Forest Robustness Certifier 162

9.4.2.1 Fast Robustness Lower Bound Certifier 165
9.4.2.2 Exhaustive Robustness Lower Bound Certifier . . . 165
9.4.2.3 Non-Binary Classification Robustness Certifier . . . 166

9.4.3 Cascade Robustness Verifier 167
9.5 Experimental Setup . 167

9.5.1 Baselines and Implementation 168
9.6 Main Results . 169

9.6.1 Model Robustness . 170
9.6.2 Robustness Certifier . 173

9.6.2.1 Accuracy . 173
9.6.2.2 Efficiency . 174

9.7 In-Depth Analysis . 178
9.7.1 Hyperparameter Analysis 178
9.7.2 Theoretical Analysis . 179

9.8 Summary . 184
9.8.1 Future Work . 185

10 Beyond Robustness 187
10.1 Related Work: Security Verification 189
10.2 Threat and Adversary’s Model . 191
10.3 Contribution 1: The Resilience Metric 192

10.3.1 Robustness vs. Resilience 192
10.3.2 Resilience Verification . 194
10.3.3 Resilience vs. Global Robustness 196

10.4 Contribution 2: Data-independent Stability Analysis 196
10.4.1 Preliminaries . 197
10.4.2 Decision Tree Stability Analysis 197
10.4.3 Forest Stability Analysis . 204

CONTENTS 7

10.5 Experimental Setup . 206
10.5.1 Baselines and Implementation 207

10.6 Main Results . 210
10.6.1 Shortcomings of Robustness 210
10.6.2 Effectiveness of Resilience Verification 212

10.7 In-Depth Analysis . 217
10.7.1 Performance Evaluation . 218
10.7.2 Proofs of Theorems . 220

10.7.2.1 Proof of Theorem 1 220
10.7.2.2 Proof of Theorem 2 224

10.8 Contribution 3: Application in Fairness 224
10.8.1 Unfairness Scenario . 226
10.8.2 Mapping With Adversarial Machine Learning 227
10.8.3 Contribution: Global Fairness Verifier 228

10.8.3.1 Verification Algorithm 229
10.8.3.2 Synthesis Algorithm 230

10.8.4 Main Results . 231
10.8.5 Precision of the Synthesis Algorithm 232
10.8.6 Explainability of the Results 232
10.8.7 Performance Evaluation . 233

10.9 Summary . 235
10.9.1 Future Work . 236

11 Discussion Second Part 237

12 Conclusion 241

8 CONTENTS

Abstract

Over the past decade, machine learning has gained significant traction and is now
deployed across diverse domains, including information systems, finance, health-
care, cybersecurity, autonomous driving, and more. As machine learning finds
applications in various sensitive scenarios, the demand for models that exhibit
accuracy and robustness during the operational phase has grown exponentially.

One crucial factor that profoundly shapes the quality of machine learning mod-
els revolves around the training data they rely upon and the input data encountered
at the operational phase. Therefore, the development of data-aware algorithms is
of paramount importance in achieving high-quality machine-learning models.

This thesis contributes to this overarching objective by delving into the devel-
opment of data-aware algorithms, emphasising the importance of this awareness
during both the training and operational phases of machine learning models. The
research presented in this thesis focuses on two primary domains. Firstly, it centres
on information retrieval, with a particular emphasis on enhancing both the effi-
ciency of learning-to-rank learning algorithms and the effectiveness of the learned
models in solving ranking tasks. Secondly, it focused on adversarial machine learn-
ing scenarios, striving to enhance the robustness of binary classifiers against ad-
versarial inputs at the operational phase while providing certifiable models to
efficiently assess robustness against adversarial machine learning attacks.

9

10 ABSTRACT

Chapter 1

Introduction

Over the past decade, Artificial Intelligence (AI) has assumed an increasingly
prominent role in various aspects of our society. Coined in 1956, the term “Ar-
tificial Intelligence” refers to the computer science discipline that focuses on de-
veloping systems and computers that perform tasks typically requiring human
intelligence, such as learning, reasoning, decision-making, and problem-solving.
This discipline has gained significant relevance in recent years, increasing across
various domains due to its ability to automate complex processes and analyse vast
amounts of data.

The methodology that has most significantly contributed to the rapid advance-
ment of AI is Machine Learning (ML). Machine learning represents an innovative
and dynamic approach to data analysis and problem-solving. It is centred on the
automatic acquisition of knowledge from data to enhance computer performance
in specific tasks. The adoption of ML has played a significant role in the rapid
rise of AI in diverse scenarios. This remarkable progress has been driven by two
fundamental traits: ease of use and the ability to extract valuable insights from
data with little or no direct human intervention in the learning process. Research
in ML aims to create algorithms that automatically enhance their performance
based on data. In short, machine learning algorithms take data as input and pro-
duce a model that performs the desired task. The tasks performed by ML models
primarily include classification, regression, clustering, and ranking. This thesis
mainly focuses on the first and the last.

Nowadays, it is hard to find applications that do not apply ML models, espe-
cially in technological, financial, social, and medical scenarios. For example, ML
is widely used in search engines, authentication systems, decision-making tools,
and risk assessment systems. Given the extensive application of ML, especially in
sensitive scenarios such as medicine and cybersecurity, developing reliable, robust,
and secure systems is crucial.

The aspect that most likely compromises the achievement of these desirable

11

12 CHAPTER 1. INTRODUCTION

properties is the quality of the data involved in various stages of the model life
cycle. The ability of an ML model to successfully execute its assigned task largely
depends on the quality of the data used in the learning process, i.e., the train-
ing data. Consequently, the quality of the data is of fundamental importance.
Unfortunately, the nature of the data and how it is collected often undermines
its quality. Training data may contain inconsistencies, biases, or errors that can
negatively impact the model’s learning process and lead to expected outcomes.

Furthermore, due to various circumstances, an ML model can fail its task
during the operational phase, i.e., when asked to perform the task it was trained
for. For example, the model may fail to predict instances far from the distribution
it encountered during the training phase, that is, instances that are very different
from what it saw during the training phase. Additionally, the model may fail
to correctly classify instances manipulated or artificially generated by a malicious
entity, forcing it to take an unexpected behaviour, e.g., unauthorised system access
or exposure of confidential information. Manipulating instances to compromise
either the training or operational phase is called Adversarial Machine Learning
(or Adversarial Learning). The vulnerability of machine learning models to these
adversarial machine learning manipulations has given rise to a further branch of
research in the field of ML, which focuses on creating models that are robust to
such attacks.

This undesired characteristic of ML contradicts the literal definition of “Ar-
tificial Intelligence”; AI is not as intelligent as it might seem. As asserted by
Goodfellow et al. in [75], an AI model, during its learning process, creates its own
“Potemkin village”; ML models are not truly learning the semantics of data. This
analogy suggests that the model performs well on instances that occur naturally
but performs poorly when encountering instances with a low probability in the
distribution. The inability of ML models to learn the semantics of data opens up
possibilities for adversarial learning attacks, where malicious entities subtly modify
input instances to cause unexpected behaviour in the model.

The discovery of these vulnerabilities has highlighted the need to develop rig-
orous data collection and pre-processing protocols, as well as advanced quality
control methods to protect against adversarial machine learning attacks. In addi-
tion, due to the enormous volume of data generated daily and the massive amounts
of data required to train complex systems such as ChatGPT, BERT [58], etc., it is
often impossible to exercise complete control over the data, including all possible
inputs that the model may encounter.

Therefore, this thesis addresses these issues by designing data-aware machine-
learning algorithms that can autonomously intervene on the input to identify valu-
able and harmful data. Additionally, our focus extends to the development of tools
that assess and guarantee the quality and security of learned models. We believe

1.1. CONTRIBUTIONS OF THIS THESIS 13

these research directions are necessary to fully leverage the transformative poten-
tial of artificial intelligence across a wide range of applications. By prioritising
these aspects, we can ensure that AI technology is used effectively and responsibly
while minimising potential harm.

1.1 Contributions of This Thesis

This thesis encompasses the research effort I dedicated during my doctoral stud-
ies in Computer Science. The scientific contributions revolved around improving
the data awareness of machine learning algorithms during both the training and
operational phases. In particular, it focused on two specific domains: Learning to
Rank (LtR) and Adversarial Machine Learning (AML) in binary classification.

In the Learning to Rank domain, the research focused on designing data-aware
LtR learning algorithms to obtain more efficient learning algorithms and more
effective and efficient ranking models. For what concerns adversarial machine
learning in binary classification, the research concentrated on adversarial attacks at
the operation phase. To counteract this phenomenon, data awareness was included
in the learning process to obtain more robust learning algorithms.

Below, the main contribution and results for each domain area are provided.

Learning to Rank Learning to Rank represents a class of machine learning
algorithms applied to solve the task of generating a ranking for a set of documents
or items based on their relevance to a given query or request.

Our research in this domain is divided into two distinct directions. The first
direction focuses on identifying the quality of documents in the training set to im-
prove the effectiveness of the model’s learning process. By distinguishing between
“good” and “bad” documents, the model can avoid learning from non-relevant or
misleading information. The second direction is to enhance the learning process
using advanced document comparison strategies. By doing so, the model can bet-
ter differentiate between relevant and non-relevant documents, thereby producing
more accurate and effective rankings.

The research in this field is enclosed in three articles, each of which made
significant strides in advancing our understanding and capabilities in this domain.

Filtering out Outliers in Learning to Rank [121] This work, in pro-
ceedings as a full paper at the ICTIR ’22: The 2022 ACM SIGIR International
Conference on the Theory of Information Retrieval, presents a novel concept in
the field of Learning to Rank: the notion of consistent outliers. These consistent
outliers refer to documents that are consistently mis-ranked during the training
phase.

14 CHAPTER 1. INTRODUCTION

Our research unearthed a significant issue: the continuous presence of consis-
tent outliers during the learning phase taints the final model, ultimately compro-
mising its overall effectiveness. Building upon this outlier definition, we designed
a new learning-to-rank learning algorithm called Surrender on Outliers and Rank
(SOUR). The SOUR algorithm first identifies and isolates these persistent outlier
documents, and then, it trains a model using a training dataset that has been
cleansed of these noxious documents. This approach aims to enhance the model’s
effectiveness and robustness by mitigating the influence of these consistently mis-
ranked documents.

On the Effect of Low-Ranked Documents: A New Sampling Function
for Selective Gradient Boosting [110] In this work, we developed a new doc-
ument selection function for the Selective Gradient Boosting (SelGB) framework
proposed by Lucchese et al. in their work [115]. This selection function has been
designed to make the most of the informativeness of the lowest-ranked non-relevant
documents. This work is in proceeding as a full paper at the SAC ’23: The 2023
ACM SIGAPP Symposium on Applied Computing.

SelGB is an ML framework that uses Gradient Boosting Decision Trees (GB-
DTs) for ranking purposes. As part of its training process, SelGB performs per-
query document selection at regular intervals after a fixed number of training
iterations.

The original selection function provided with SelGB completely discards the
lowest-ranked non-relevant documents in favour of the highest-ranked non-relevant
counterparts. We investigated the potential value of the lowest-ranked non-relevant
documents in enriching the learning process. Our findings revealed that a blended
approach, combining the highest-ranked and lowest-ranked non-relevant docu-
ments, effectively overcomes the limitations of the original algorithm, resulting
in a more robust and stable learning process. Furthermore, removing a significant
portion of the documents in the training set provides a significant speed-up in the
training process, improving the efficiency of the learning algorithm.

LambdaRank Gradients are Incoherent [122] In our study, we discov-
ered a notable issue with LambdaRank and its derivatives regarding gradient co-
herence to document relevances. Specifically, we observed that, during the learning
phase, a mis-ranked document with high relevance could be pushed down in rank-
ings more significantly than a document with lower relevance. This suggests that
the learning algorithm failed to learn how to prioritise the most relevant documents
during the learning phase.

We conducted an in-depth analysis of the occurrence of this phenomenon during
truncated and un-truncated metric optimisation and discovered that these gradi-

1.1. CONTRIBUTIONS OF THIS THESIS 15

ent incoherencies have a detrimental impact on the overall effectiveness of the
final models. Furthermore, we discovered that this phenomenon is exacerbated by
truncated metric optimisation, which provides a significant drop in performance
compared to un-truncated optimisation. As a consequence, this discovery forces a
choice between an efficient truncated training process and effective learned models
provided by un-truncated optimisation.

To solve this exacerbation problem and avoid a trade-off between training ef-
ficiency and models’ effectiveness, we devised three strategies for performing pair-
wise document comparisons. The aim is to improve the contribution of highly
relevant documents that may be overlooked during the training phase. Through
empirical testing, we proved that our proposed solutions successfully addressed
gradient incoherencies, resulting in enhanced model effectiveness comparable to
un-truncated metric optimisation algorithms while maintaining the training effi-
ciency as truncated optimisation.

The work is in proceedings as a full paper at the CIKM ’23: The 2023 ACM
International Conference on Information and Knowledge Management.

Adversarial Machine Learning In the area of Adversarial Machine Learning,
we placed a significant emphasis on classification models based on Decision Trees
under Evasion Attacks (attacks at the operational phase).

Specifically, the contribution revolved around developing learning algorithms
tailored to training robust models capable of withstanding evasion attacks. Addi-
tionally, we delved into the critical aspect of verifying and certifying the robustness
of machine learning models to estimate the level of performance even when sub-
jected to adversarial attacks. Moreover, we introduced a novel metric devised to
assess the robustness of ML models, and we also designed an algorithm to effi-
ciently verify this metric for tree-based models.

Also, in this domain, the contribution is enclosed in three articles aimed at
improving and evaluating the robustness of machine learning models.

Feature Partitioning for Robust Tree Ensembles and Their Certifi-
cation in Adversarial Scenarios [34] This article, published as a full paper
at the EURASIP Journal on Information Security, 2021, introduces an innovative
approach to training robust decision tree forests, particularly in the context of
evasion attacks. The key concept involves training each tree within the forest on a
distinct partition of the feature space. This strategic partitioning is meticulously
designed to limit the impact of an evasion attack to less than half of the forest.

The ensemble structure resulting from this feature space partitioning lays the
groundwork for developing two robustness certification algorithms. These cer-
tification algorithms efficiently and accurately compute the lower bound of the

16 CHAPTER 1. INTRODUCTION

model’s robustness. Efficiency and accuracy are fundamental qualities for obtain-
ing valuable information on the model’s ability to resist adversary manipulation
in a feasible time frame.

Beyond Robustness: Resilience Verification of Tree-Based Classifiers
[31] This article, published as a full paper at the Computers & Security, 2022,
introduces a new evaluation metric called Resilience to assess the model’s security
to AML attacks and compensate for the deficiencies in the well-known and widely
used Robustness metric. The Resilience metric verifies the security (stability) of
the model not only for instances in the evaluation set but also for every possible
instance in a neighbourhood close to the original evaluation instance. A model is
considered stable when it produces an equal prediction under attack for all possible
instances sampled from this neighbourhood. Consequently, Resilience checks for
any effective evasion attacks that can be generated from instances close to the
original evaluation instance; , information not covered by the Robustness metric.
This allows for better quantification of the model’s ability to resist evasive attacks.

However, Resilience has some drawbacks: verifying model stability for all possi-
ble instances in a neighbourhood is not feasible since it is a continuous space. This
makes calculating Resilience impossible. To overcome this problem, we provided
a data-independent stability analyser for tree-based models that produces hyper-
rectangles representing portions of the feature space where the model is stable.
Through hyper-rectangles, it is possible to compute where the model is resilient.

Explainable Global Fairness Verification of Tree-Based Classifiers
[30] This article differs from the previous two as it focuses on fairness in ma-
chine learning. However, we approached this issue from the perspective of an
evasion attack scenario.

We expanded upon the model-stability analyser introduced in our previous
work (i.e., article [31]) to create a Synthesis Algorithm that characterises model
fairness; specifically, it looks for portions of the feature space where the model is
guaranteed to exhibit a lack of causal discrimination. Causal discrimination occurs
when individuals with comparable characteristics within the system but belonging
to distinct protected groups, such as gender or race, receive disparate responses
from the model: in such settings, the model is unfair.

We used the stability analyser to find portions of the feature space where the
model may provide causal discrimination and the Synthesis Algorithm to charac-
terise a portion of the feature space where the model is fair. The formulas generated
by the Synthesis Algorithm are expressed as a set of traditional propositional logic
formulas that pertain to the entire feature space rather than being confined to a
specific evaluation set. This approach ensures global fairness guarantees.

1.2. THESIS STRUCTURE 17

Furthermore, our methodology is inherently explainable, meaning that human
experts can easily understand it because it is based on conventional logical for-
mulas. In particular, our empirical findings demonstrate that a concise set of
simple logic formulas effectively encapsulates the classifier’s fairness guarantees in
practical scenarios.

The contribution of this research is published as a full paper at the SaTML
’23: The 2023 IEEE Conference on Secure and Trustworthy Machine Learning.

The main contribution of this thesis is to make machine learning models more
effective, efficient and robust. Specifically, for learning to rank algorithms, we aim
to enhance the effectiveness of the ranking produced at the operational phase and
efficiency in terms of training time. For binary classification algorithms, we focus
on improving the security in terms of robustness to evasion attacks in adversarial
scenarios and provide efficient and accurate robustness certification algorithms.

Notwithstanding the differences between the two research domains, it’s worth
noting that they share a common goal: the creation of learning algorithms that are
aware of the input data. Therefore, in order to improve the state of the art in both
research domains, we focused on developing data-aware learning algorithms to deal
with potentially detrimental inputs encountered during training and operational
phases. Harmful inputs encompass everything that undermines the model’s qual-
ity, including noise, errors, or outliers within the training set, as well as malicious
instances crafted by an attacker to cause unexpected model behaviour. Moreover,
it’s crucial to emphasise that input awareness serves not only to enhance the ef-
fectiveness and robustness of models but also their efficiency. Increased awareness
of input data allows for strategic choices to minimise the computational costs of
the training process.

1.2 Thesis Structure

The thesis is structured into the aforementioned macro areas: Learning to Rank in
Part I and Adversarial Machine Learning in Part II. While these areas have distinct
characteristics, they share fundamental concepts like machine learning, supervised
learning, and ensemble methods. For this reason, the thesis begins with Chapter 2,
“Basic Notions”, consolidating the foundational knowledge relevant to both parts
of the thesis.

Subsequently, the thesis delves into the heart of Part I, “Effective and Efficient
Ranking Algorithms”, dedicated to our contributions in the domain of learning
to rank. The part initiates with Chapter 3, “Background and State of the Art”,
offering an introduction to the foundational concepts and the current state of the
art in learning to rank. This chapter presents evaluation metrics, existing learning

18 CHAPTER 1. INTRODUCTION

algorithms for LtR, and benchmark datasets.
Part I dedicates a chapter to each article published within the learning to rank

research field, providing an in-depth examination of the proposed solutions and the
experiments conducted. In particular, Chapter 4 presents Filtering out Outliers in
Learning to Rank, Chapter 5 introduces On the Effect of Low-Ranked Documents:
A New Sampling Function for Selective Gradient Boosting, and Chapter 6 discusses
LambdaRank Gradients are Incoherent. The articles are presented chronologically,
highlighting the evolution of research and discoveries made in each work. These
three chapters thoroughly examine the contributions and specific state of the art
of each work and conduct in-depth analyses of the choices made and the results
obtained.

The first part concludes with Chapter 7, “Discussion First Part”, where the
thesis gathers conclusions and considerations regarding the research in the LtR
domain, the discoveries made and the relationships between the articles. Further-
more, it delineates potential future work in this domain and possible extensions of
the published articles.

Subsequently, the thesis progresses into Part II, “Robust Learning Algorithms
for Classification”, dedicated to contributions in the Adversarial Machine Learning
domain. This part starts with a detailed introduction to the concept of Adversarial
Machine Learning in Chapter 8. This chapter includes the definition of attacker,
types of attacks, evaluation metrics, state of the art, and datasets used in the
experimental analysis.

In this part, two chapters are dedicated to articles published within the Ad-
versarial Machine Learning domain. Chapter 9 presents Feature Partitioning for
Robust Tree Ensembles and their Certification in Adversarial Scenarios, while
Chapter 10 discusses Beyond Robustness: Resilience Verification of Tree-Based
Classifiers. This chapter also includes a section on the follow-up work Explainable
Global Fairness Verification of Tree-Based Classifiers. These articles are presented
in chronological order, and each chapter provides a detailed analysis of the pro-
posed solutions, their limitations, and the state of the art considered in each work.

The second part concludes with Chapter 11, “Discussion Second Part”, where
the thesis compiles conclusions and considerations regarding research in the Ad-
versarial Machine Learning field, the contributions, and potential future work.

Ultimately, the thesis culminates with Chapter 12, “Conclusion”. This chapter
provides final insights regarding the research performed during the doctoral studies
in improving the machine learning domain with data-aware learning algorithms
to efficiently train effective, efficient and robust models. Moreover, this chapter
provides interesting future works, bonding the distinct research areas covered in
the two parts of the thesis.

Chapter 2

Basic Notions

This chapter introduces the fundamental concepts of machine learning, which are
shared throughout both parts of the thesis. The chapter also introduces the nota-
tion used in this thesis and important concepts and algorithms that are essential
to understanding the entire work, such as Supervided Learning, Decision Trees,
Random Forests, and Gradient Boosted Decision Trees.

2.1 Machine Learning

Machine learning represents a transformative branch of artificial intelligence that
endows computer systems with the ability to acquire knowledge, adapt to patterns,
and make data-driven decisions without explicit programming. It involves a wide
range of algorithms and methodologies designed to allow computers to learn from
data. At its core, machine learning seeks to discover patterns, relationships, and
insights within complex datasets. It offers invaluable solutions across various do-
mains, from predictive analytics to natural language processing and autonomous
systems. It embodies the pursuit of automated learning and decision-making, epit-
omising the intersection of data science, mathematics, and computer science in the
quest to empower machines with cognitive capabilities. Machine learning, a core
facet of artificial intelligence, comprises four fundamental paradigms, each with its
unique characteristics:

• Supervised Learning: Supervised learning relies on data manually labelled
by human experts to enable algorithms to learn from examples. One of the
most common use cases is classification, where the model assigns labels to
unseen input instances based on what it has previously learned.

• Semi-Supervised Learning: Semi-supervised learning involves using both
labelled and unlabelled data, allowing for a balance between supervision and

19

20 CHAPTER 2. BASIC NOTIONS

data-driven discovery. This approach proves to be quite useful when it is
challenging to acquire large labelled datasets.

• Unsupervised Learning: Unsupervised learning operates only on unla-
beled data, with the objective of discovering hidden patterns or structures
within the data. Common applications of unsupervised learning include clus-
tering and dimensionality reduction.

• Reinforcement Learning: Reinforcement learning employs agents to in-
teract with the environment in order to maximise cumulative rewards. This
method proves to be pivotal in areas such as autonomous decision-making,
where the agent learns to make decisions based on the rewards received.

These paradigms illustrate the varied landscape of machine learning, with each
tailored to address specific objectives and domains.

This thesis exclusively concentrates on machine learning algorithms employing
supervised learning. Consequently, the subsequent section provides a comprehen-
sive examination of the supervised learning paradigm.

2.1.1 Supervised Learning

Supervised learning is a machine learning technique that, given an input instance,
returns a score convertible into a label (in the case of classification) or a real value
(in the case of regression). Informally, in classification tasks, given a set of cor-
rectly labelled objects, the supervised learning technique looks for a function, also
known as classifier, that effectively discriminates them among the available classes.
Subsequently, this function is used to assign labels to new objects. Similar to clas-
sification tasks, given a set of objects, each paired with a real value, in regression
tasks, the supervised learning technique aims to identify a function named regres-
sor that effectively captures the relationship between the input objects and their
continuous variable. The regressor is used to assign a real value to new objects.
Typically, the output of a supervised learning algorithm is called learner or model.

Finally, a more formal definition of the classification task is provided. Let X ⊆
Rd represent a d-dimensional vector space of real-valued features named feature
space, where each element x ∈ X is referred to as instance and is represented
as x = (x(1), . . . , x(d)). Each instance x is associated with a label y ∈ Y , where
Y denotes the output space, also known as ground truth. This mapping between
instances in X and labels in Y is defined by an unknown function g : X → Y ,
named the target function. Given the hypothesis set H, the supervised learning
algorithm L finds the function h ∈ H that best approximates the target function
g, i.e., the function ĥ [120]. The prediction of the function (model) ĥ over the
instance x is denoted as ĥ(x).

2.1. MACHINE LEARNING 21

To accomplish this objective, the learning algorithm necessitates a collection
of exemplars that facilitate the acquisition of the correlation between X and Y .
In the domain of supervised learning, the set employed for this specific purpose
is referred to as the training set. The learning algorithm exploits a training set,
D = {(x 1, g(x 1)), . . . , (xn, g(xn)}, with n = |D|, which is a set of (instance, true
label) pairs. In accordance with statistical learning theory, the function ĥ that best
approximates g can be found by means of empirical risk minimisation [168]. Given
the sets D andH, the empirical risk is defined as a loss function L : H×(Y×X)n →
R+. This particular loss function, L, serves as a quantitative measure assessing
the cost of an erroneous prediction performed by ĥ(x) in comparison to the ground
truth target function g. To find the hypothesis that minimises the empirical risk,
the following optimisation problem must be solved:

ĥ = argmin
h∈H

L(Y , h(X)) (2.1)

where ĥ is the hypothesis that yields the lowest loss.
Finally, the L function can be derived by aggregating the instance-level loss,

represented as ℓ : Y × Y → R+. Consequently, the L function can be explicitly
defined as follows:

L =
∑

(x ,y)∈D

ℓ(y, h(x)). (2.2)

This approach comprehensively assesses the cumulative loss incurred across the
entire training set.

2.1.2 Decision Trees

A Decision Tree (DT) is one of the most well-known machine learning models,
deriving its nomenclature from its tree-like structure. A DT comprises two princi-
pal components: internal nodes and leaves. Each node within the tree conducts a
feature test, commonly referred to as a split, on the input data. Typically, every
node is associated with a feature f and a threshold value v, upon which the test
f ≤ v is performed.

The data traversing a node undergoes division into subsets based on the out-
come of the test. Each leaf in the tree contains either a label in the case of
classification or a numerical value in the context of regression. In the predic-
tion phase, instances are assigned to the label or value corresponding to the leaf
they ultimately reach. The splitting process is applicable to both categorical and
numerical features.

For categorical features, the chosen category serves as the discriminator for
the elements, dividing the set into those belonging to the selected category and

22 CHAPTER 2. BASIC NOTIONS

is: "pet"

is: cat

dog cow

true false

true false

threshold

internal node

label/prediction

leaf

feature

Figure 2.1: Decision tree example, with numeric and categorical features.

those that do not. When dealing with numeric features, the division occurs based
on whether an element’s value for the tested feature is lower or higher than a
predefined threshold. In Figure 2.1, an illustrative example of a decision tree is
presented, showcasing both categorical split (n1) and numeric split (n2).

So far, only the prediction phase of the model has been mentioned; however,
it is equally important to provide an overview of the tree training phase. The
creation of a Decision Tree (DT) typically involves an iterative process where
the best-split point is selected at each step. This split divides the input dataset
into subsets, which then become the input for subsequent steps, progressively
reducing the size of the dataset. The training process continues until a specific
termination condition, known as stop criteria, is met. Various stop criteria are
employed to control the tree’s growth, includingmax depth, which halts tree growth
upon reaching a specified height, max leaves, which limits the number of leaves,
and purity, which concludes growth when the majority class of a leaf exceeds a
predefined threshold compared to the others.

During the learning phase, the primary objective is to identify the most effective
way to divide the data into two groups, which is known as the optimal split. This
optimal split indicates the feature f and value v that provide the best partition for
the set D. As detailed by Zhou in [190], several methods have been proposed to
determine the best split. The most common criteria are Information Gain, Gain
Ratio, and Gini Index for classification tasks, as well as Mean Square Error, Mean
Absolute Error, and R-squared for regression tasks.

It’s essential to note that merely pursuing the best split does not guarantee
the creation of a well-generating decision tree. Overfitting, a phenomenon where
the model adapts too closely to the training set, often learning from irrelevant

2.2. ENSEMBLE METHODS 23

noise, can lead to suboptimal performance on unseen data. Techniques like node
pruning, bootstrap sampling, and feature sampling have been employed to address
overfitting. Further insights into these strategies can be found later in this thesis
or at the following sources: [190, 63].

This thesis mainly employs binary decision trees, specifically designed for han-
dling numeric features and performing binary classification tasks. Therefore, we
provide an inductive definition of decision tree as defined by Calzavara et al. in
[35]. A decision tree, t, can assume one of two roles: it can either be a leaf or a
non-leaf (internal node). A leaf is represented as λ(ŷ), where ŷ ∈ Y is its class
label. On the other hand, a non-leaf is characterised as σ(f, v, tl, tr), with the
following components:

• f ∈ {1, . . . , d} = F designates a feature from the feature space X .

• v ∈ R serves as the threshold to test the value of feature f .

• tl and tr correspond to the decision trees situated in the left and right
branches of t, respectively.

During the classification phase, an instance x traverses the decision tree t,
starting from the root and ending at a leaf λ(ŷ). The leaf reached by x contains
the prediction ŷ = t(x). The traversal from the root to a leaf is made through the
internal nodes. Each internmal note σ(f, v, tl, tr) encounteredd by the isntance x
performs the feature test x(f) ≤ v. If the answer is positive, the instance proceeds
along the left branch, otherwise toward the right branch. Consequently, at each
feature test, the instance progresses through a single branch at a time, ultimately
reaching a single leaf.

2.2 Ensemble Methods

This section provides an overview of ensemble methods, focusing on Random Forest
(RF) [20] and Gradient Boosting Decision Trees (GBDTs) [69].

Usually, the standard approach to machine learning involves employing a single
learner to address a specific problem. On the other hand, ensemble methods
amalgamate multiple learners to accomplish the same task; this paradigm is called
ensemble learning. These individual learners within the ensemble are often called
base learners or weak learners and are trained through a base-learning algorithm.
To get a good ensemble, individual learners should be as accurate as possible and
as different as possible from one another.

Typically, creating an ensemble is divided into two parts: generating individual
base learners and combining them through a combination strategy. These two

24 CHAPTER 2. BASIC NOTIONS

parts are not necessarily separate but can also occur simultaneously. Below is an
example of this through two ensemble creation paradigms: sequential and parallel
ensembling methods.

Parallel ensemble methods create base learners simultaneously, which makes
their construction independent from each other. This independence can be ex-
ploited to reduce training time through parallelised model training. This paradigm
leverages the capability to decrease ensemble error by combining independent
learners (e.g., Bagging [19]). The combination occurs by aggregating the pre-
dictions of each base learner to create a single ensemble prediction. One of the
most well-known combination strategies is majority voting.

In contrast, sequential ensemble methods generate base learners one after an-
other. This allows the exploitation of dependencies between learners and an at-
tempt to enhance model performance by introducing new learners (e.g., Gradient
Boosting [69]). In general, this paradigm aims to correct the errors of the ensemble
trained previously by adding a new base learner. In this case, the combination
happens between the ensemble and the newly trained base learner. Consequently,
the ensemble is formed as a chain of base learners. A well-known combination
strategy is the weighted sum of the output from each base learner.

Overall, ensemble methods possess two crucial advantages. First, combining
base learners usually results in better generalisation than individual learners. Sec-
ond, learning multiple base learners and merging their predictions is often easier
than creating a single powerful learner.

2.2.1 Random Forest

Random Forest [20] is among the most renowned ensemble methods, and it vividly
exemplifies the concept of independence among base learners achieved through
randomness. The Forest component in Random Forest is derived from its assembly
of Decision Trees (forest), while the Random part stems from the randomisation
that is performed with two strategies: bootstrap and feature sampling [63].

As previously mentioned, the fundamental combination of independent learners
results in a more efficient ensemble. However, the size of the training set is finite,
so it’s not always feasible to divide the training set into equal parts and train a
base learner for each of them. This limitation arises from the fact that each base
learner would be trained on an excessively small subset.

Bootstrap sampling [63] is a strategy employed to establish independence among
base learners through a trade-off between the diversity of instances within the
samples and the maximum size of the samples. Precisely, with n instances in the
training set, bootstrap sampling can generate samples of size n by selecting in-
stances randomly with replacement. As a result, two different samples may be
disjoint or may share only a small subset of instances. This approach facilitates

2.2. ENSEMBLE METHODS 25

the creation of independent base learners by training on a distinct subset of the
training set.

Feature sampling [20], on the other hand, covers the training phase of Deci-
sion Trees. Specifically, the selection of the optimal split is not based on all the
features within the feature set F ; instead, it relies on a randomly chosen subset
of features F̂ ⊆ F typically of size k. This randomisation, introduced by feature
sampling, enhances model generalisation since each node within the tree employs
a distinct subset of features for data splitting. Note that while each base learner
may encounter a reduction in performance due to the reduced search space, this
effect is mitigated when they are aggregated in an ensemble.

Lastly, the aggregation of predictions involves majority voting for classification
tasks and averaging for regression tasks. The majority voting strategy is divided
into two categories: hard majority voting, where the most frequently predicted
label among the base learners is selected as the final prediction, and soft majority
voting, where the prediction of each base learner contributes to a weighted vote.
Finally, for regression tasks, the result is computed by averaging the predictions
generated by all the base learners. The algorithm for Random Forest is provided
in Algorithm 1 [120].

2.2.2 Gradient Boosted Decision Trees

The Gradient Boosting Decision Tree (GBDT) [69] is an ensemble method that
leverages the Gradient Boosting construction algorithm (GB), employing the deci-
sion tree learning algorithm as its base learner. The GBDT method is suitable for
classification and regression tasks, particularly effective when dealing with noisy
or imperfect data.

As mentioned earlier, the core element of GBDT is Gradient Boosting. GBDT
is an iterative meta-algorithm that guides the combination of base learners to
create more effective models. In each iteration of GBDT, a gradient descent step
is taken by introducing a new base learner to the ensemble. For instance, when
GBDT optimises a regression task with MSE, the new base learner corrects the
error of the ensemble up to that point. This newly introduced base learner is
then integrated into the ensemble to enhance its overall performance. These base
learners essentially represent functions, and their combination allows the creation
of a more powerful function that fits the data more effectively.

Even though Gradient Boosting Decision Trees is extensively used in Part I, a
deep knowledge of how it works is not necessary. Therefore, we provide only a brief
description of this learning algorithm below. Additional information regarding
GBDT can be found in the references cited in the text below. Furthermore, the
algorithm for Gradient Boosting Decision Trees is presented in Algorithm 2 [120].

26 CHAPTER 2. BASIC NOTIONS

Algorithm 1 Random Forest

1: function RandomForest(D, F , N)
2: Input
3: D : training set
4: F : feature set
5: N : ensemble size
6: Output
7: F : final ensemble

8: F ← ∅
9: for i = 1 to N do
10: Si ← BootstrapSampling(D)
11: ti ← RandomForestTree(Si,F)
12: F ← F ∪ {ti}
13: return F

14: function RandomForestTree(D,F)
15: Input
16: D : training set
17: F : feature set
18: Output
19: t : decision tree

20: if all instances in the same class ∨ stopping criteria has been reached then
21: return λ(ŷ(D))
22: F̂ ← RamdomFeatureSampling(F , k)
23: (f, v)← BestSplit(D, F̂)
24: tl ← RandomForestTree(D(f) ≤ v,F)
25: tr ← RandomForestTree(D(f) > v,F)
26: t← σ(f, v, tl, tr)
27: return t

Friedman in [69, 70] formalised the GB and GBDT algorithms in a gener-
alised manner with a minimal dependency on the specific loss function used. More
formally, consider a learning algorithm L responsible for training a decision tree
with L leaves, tailored for regression tasks, known as the L-leaves learner.
At each iteration m of the gradient boosting algorithm, the L-leaves learner
constructs a tree that partitions the training set D into L distinct regions, denoted
as {Rlm}Ll=1.

2.2. ENSEMBLE METHODS 27

Following the empirical risk minimisation principle, GB seeks the optimal γ
value to minimise the ensemble error based on the loss function L:

γlm = argmin
γ

∑
x i∈Rlm

L(yi, hm−1(x i) + γ). (2.3)

This allows for the creation of the next strong learner, denoted as hm(x), by
updating the outcomes of each leaf (region) in the learner hm−1(x) with the new
values estimated at iteration m. Note that here, we use the notation hm for
ensembles of m trees instead of Fm to focus on the aggregation of functions of
GDBT. Finally, the base learner is aggregated into the ensemble using the following
aggregation formula:

hm(x) = hm−1(x) + ν · γlm1(x ∈ Rlm), (2.4)

where 0 < ν ≤ 1 is the shrinkage parameter designed to prevent overfitting.

Algorithm 2 Gradient Boosting Decision Trees

1: function GradientBoostingDecisionTrees(D, N)
2: Input
3: D : training set
4: N : ensemble size
5: Output
6: hm(x) : final ensemble

7: h0(x)← argmin γ

∑|D|
i=1 L(yi, γ)

8: for m = 1 to N do
9: ỹim ← −

[
∂L(yi,F (x i))

∂F (x i)

]
F (x)=hm−1(x)

, i = 1, . . . , |D|

10: {Rlm}Ll=1 ← L-leaves learner({ỹim,x i}|D|
i=1)

11: γlm ← argminγ

∑
x i∈Rlm

L(yi, hm−1(x i) + γ)
12: hm(x) = hm−1(x) + ν · γlm1(x ∈ Rlm)

13: return hm(x)

28 CHAPTER 2. BASIC NOTIONS

2.3 Summary

In this first chapter, we introduced some fundamental Machine learning concepts
that lay the foundation for the two parts of this thesis. Below, we provide a
summary of the main concepts covered in this chapter:

• Supervived Learning: The first part of the chapter focused on supervised
learning, which is the primary learning technique underlying the models used
in this thesis. Supervised learning, utilises empirical risk minimisation to find
the hypothesis ĥ that best approximates the target function g when provided
with a training dataset.

• Decision Trees: Next, we delved into the Decision Trees learning algorithm.
We explained the structure of a decision tree, consisting of internal nodes and
leaves, and explained how instances are partitioned within the tree’s internal
nodes, leading to predictions at the leaves. Furthermore, we presented a
formal definition of the Decision Tree, which is extensively employed in the
second part of the thesis.

• Ensemble methods: This section introduced the concept of ensemble
learning and base learners. It outlined the two-step process of creating en-
sembles, including base-learner generation through a base-learning algo-
rithm and their combination through a combination strategy. Finally,
we explained how exploiting dependence and independence between learners
is possible through a sequential and parallel construction, respectively.

• Random Forest: The “Random Forest” section holds fundamental impor-
tance within this chapter, as Random Forest is extensively employed in the
second part of the thesis. A comprehensive understanding of Random For-
est’s internal structure is essential for understanding the experiments and
providing an explanation of the results. For this reason, this section intro-
duced key concepts such as bootstrap sampling and feature sampling.
Furthermore, it is crucial to comprehend the mechanics of Random Forest’s
prediction, where individual tree’s predictions are aggregated through ma-
jority voting.

• Gradient Boosting Decision Trees: Lastly, in the concluding section of
this chapter, we introduced Gradient Boosting and its adaptation to decision
trees, known as Gradient Boosted Decision Trees. In essence, GBDT trains
each tree to correct the error made by the prediction of the ensemble trained
until that moment. GBDT models are widely utilised in the first part of the
thesis, as they are considered the state of the art in Learning to Rank.

Part I

Effective and Efficient Ranking
Algorithms

29

Chapter 3

Background and State of the Art

This chapter introduces the first part of this thesis, i.e., Part I: Effective and
Efficient Ranking Algorithms. This first part covers the contribution made to
the Information Retrieval research area, focusing on learning-to-rank techniques,
specifically on their effectiveness and efficiency. Instead, this chapter provides
the background and the state of the art of Information Retrieval and Learning
to Rank research areas to fully understand the contribution of this part of the
thesis. The chapter encompasses the definition of Learning to Rank, the metrics
to evaluate the model’s effectiveness, the key solutions and the research within the
LtR domain, and finally, an exploration of the most common benchmark datasets.

3.1 Information Retrieval

Information Retrieval (IR) is a fundamental discipline in the field of computer sci-
ence and information science. IR is the science of searching for information within
documents, searching for documents relevant to a query (queries are formal state-
ments of information needs), or searching for metadata describing data. It plays
a pivotal role in solving the problem of information overload, i.e., the difficulty
of making decisions or extracting useful information from a large amount of data.
In our modern, data-driven world, the exponential growth of digital information
necessitates efficient methods for finding, accessing, and retrieving relevant data.
This discipline is not only a cornerstone of web search engines but also underlies
numerous applications, including document management systems, recommenda-
tion engines, and intelligent personal assistants.

In [119], Information Retrieval is defined as “finding material of an unstruc-
tured nature that satisfies an information need from within large collections.”
This succinctly captures the essence of IR, which revolves around the processes of
searching for, assessing, and retrieving information that aligns with a user’s spe-

31

32 CHAPTER 3. BACKGROUND AND STATE OF THE ART

cific information needs. The information can be in various formats, such as text
documents, multimedia content, or structured data.

IR systems bridge the gap between users and vast repositories of information by
employing a variety of techniques and algorithms. These systems employ methods
from fields like natural language processing, machine learning, and data mining to
index, rank, and retrieve relevant content efficiently.

Key components of an IR system include:

• Document Collection: A vast collection of documents, which could range
from web pages and scientific articles to books and multimedia content.

• Query: A user’s information need, expressed as a query, typically consisting
of keywords or a more complex search string.

• Indexing: The process of analysing and cataloguing documents to facilitate
efficient retrieval.

• Ranking: The algorithmic process of scoring and ordering documents based
on their relevance to a given query.

• Evaluation: Methods to assess the performance of an IR system, typically
using metrics like Precision [119], Recall [119], and F1-score [50].

Over the years, IR has evolved significantly, adapting to the changing landscape
of information and user expectations. Today, the development of IR systems is
driven by ongoing research in the field, with a focus on enhancing precision, per-
sonalisation, and scalability.

In conclusion, Information Retrieval is a critical discipline that empowers indi-
viduals and organisations to access the vast ocean of digital information efficiently.
It combines the power of advanced technologies with a deep understanding of user
needs to deliver timely, relevant, and valuable information.

3.2 Learning to Rank

One of the most classic examples of Information Retrieval (IR) applications is
Web Search Engines. Web Search Engines take as input a user needs (a query)
and retrieve a narrowed selection of documents from a pool of web pages, sorted by
their relevance [101, 180, 61]. A widely used strategy in this domain is Learning to
Rank (LtR). LtR is a class of machine learning techniques that apply supervised
learning to solve ranking problems.

The main difference between LtR and traditional supervised learning tech-
niques such as classification and regression is the type of problem they solve.

3.2. LEARNING TO RANK 33

Traditional ML algorithms solve a prediction problem on independent instances,
and the prediction result does not influence the outcome/performance on the other
instances. In a classification task, given an instance x , a classifier aims to predict
a label ŷ that best approximates the ground truth y. On the other hand, LtR
solves a ranking problem on a list of items. In LtR, a ranker receives a query and
a list of items as input and produces an order over the input list such that the
most relevant items for the query are placed at the top of the list. Consequently,
the position of the items in the list also influences the position of the others.

3.2.1 Formal Definition

Typically, in Information Retrieval applications, the Learning to Rank technique
is implemented in the re-ranking stage of the query processing pipeline (i.e., first-
stage retrieval and then re-ranking).

The query processing pipeline involves a first-stage retrieval, also known as
sparse retrieval, where, given a user query q, a set of candidate documents D is
extracted from a vast collection of documents. This step is fast and efficient and
is carried out using strategies such as inverted index on tokens (words) within
the documents or through more sophisticated metrics like BM25 [149]. Despite
being very efficient, the sparse retrieval stage is not sufficiently accurate; hence, a
second step, known as re-ranking or dense retrieval, is needed to refine the results.
For each query q and associates documents in D, a dense representation is created
using hand-crafted, manually-engineered features (we delve into details later in this
section). This dense representation is given as input to a learning-to-rank model
that produces a ranking over the set of candidate documents in D. Therefore,
Learning to Rank focuses solely on the re-ranking stage, ignoring the first part of
the pipeline.

In the context of Learning to Rank, an instance is defined as the triple (q,D, Y),
where q is the query, D is the set of candidate documents for q, and Y is the set of
relevance labels that each document in D has with respect to the query q. The set
D = {d1, . . . , dn} is a subset of the available document collection in the training
set. The set Y = {y1, . . . , yn} contains relevances drawn from the set Y . Typically,
Y = {0, 1, 2, 3, 4}, with 0 denoting a non-relevant document and 4 representing the
maximum relevance level with respect to query q.

The purpose of LtR is to train a ranker h that, given a query q and a set of
candidate documents D, returns a ranking π over the set of documents, according
to which documents are sorted and presented to the user. To generate the ranking
π, the ranker predicts a score si = h(di), with si ∈ R, for each di ∈ D, and
then sorts the documents in descending score order. As a result, π[i] denotes the
position of document di in the ranking; therefore, π[i] = j when di appears at the
top j-th position in the ranked list. Ideally, the ranker aims to produce a ranking

34 CHAPTER 3. BACKGROUND AND STATE OF THE ART

that aligns closely with the ideal ranking based on the ground-truth relevance
labels in Y . The better the scores si generated by the ranker approximate this
ideal ranking, the more effective (accurate) the ranker h is.

In LtR, the training set is defined as: D = {(q1, D1, Y1), . . . , (qn, Dn, Yn)}, with
n = |D|. Note that a document di can be a candidate document for multiple queries
so that it can belong to different sets of candidate documents with a different
relevance label for each query. Furthermore, each query can have a different size
of the candidate documents set.

Note that, in practice, LtR instances have the information of the query q
combined (embedded) with the information of each document di to create a single
query-document feature vector x i. The features in the feature vector x i are query-
dependent, document-dependent, and query-document-dependent. Formally, x i =
ϕ(q, di), where ϕ is a function that combines information from the query q and the
document di together. As mentioned by Lin et al. in [103], the resulting vector x i

consists of hand-crafted, manually-engineered features such as the number of query
words appearing in the document corpus or the result of metrics like BM25 [149],
Tf-Idf [151], PageRank score [21], etc. For the sake of clarity, in this thesis, we
refer to LtR instances in the form of a triple (query, documents, relevance labels);
this simplifies the distinction between queries and documents.

3.2.2 Evaluation Metrics

Another difference in LtR is the metrics to be optimised, which take into account
the rank of the documents generated by the model. The most well-known IR
metrics are briefly summarised below:

Normalized Discounted Cumulative Gain (NDCG) [88] measures the quality of
a ranked list by considering both the relevance of the documents and their positions
in the list. It performs a greater discount to the relevance scores of documents that
are ranked lower on the list compared to those placed at the top, thus giving higher
importance to high-ranked documents. Precision [119] measures the proportion of
relevant documents among the top-ranked ones, while Recall [119] calculates the
proportion of relevant documents that are retrieved in the top-ranked list. These
metrics provide insights into how well a model balances relevance and coverage
in its ranking. Average Precision (AP) [188] calculates the average precision for
a single query. It sums the Precision values at each relevant document’s position
and divides it by the total number of relevant documents. Mean Average Precision
(MAP) [106] is similar to AP but takes the mean of the AP for each query. Expected
Reciprocal Rank (ERR) [44] is a metric that takes into account the graded relevance
of documents. It focuses on the first relevant document and penalises the model
more if it’s ranked lower in the list. Rank-Biased Precision (RBP) [127] is a metric
that considers document relevance as well as the likelihood of a user viewing an

3.2. LEARNING TO RANK 35

item and the probability of stopping the list inspection. It’s particularly useful for
modelling user behaviour, where users often examine top-ranked results, making
it valuable in search engine evaluation.

3.2.2.1 Normalized Discounted Cumulative Gain

The Normalized Discounted Cumulative Gain is one of the most well-known and
widely used IR metrics for measuring the quality of a ranked list in Learning to
Rank. For this reason, in the experimental part of Part I, we extensively use
NDCG to evaluate the effectiveness of the models. The metric is examined in
detail below.

The Normalized Discounted Cumulative Gain is a metric defined within the
[0, 1] range, where 1 indicates a perfect ranking and 0 represents the worst. It is
used to assess the performance of a ranker for a specific query. The NDCG for a
query q, i.e., NDCG(π, Y), is computed as the ratio between the Discounted Cumu-
lative Gain (DCG) and the Ideal Discounted Cumulative Gain (IDCG), expressed
by the formula:

NDCG(π, Y) =
DCG(π, Y)

IDCG(π, Y)
=

DiscountedCumulativeGain

IdealDiscountedCumulativeGain
.

where π is the ranking produced by the ranker over the query q and Y is the set
of relevances that documents in D have with respect to q.

The DCG accumulates a gain for each document based on its position inside
the ranked list. The idea behind DCG is intuitive; a relevant document positioned
at the top of the list is more likely to be seen by a user (high gain) than when it
is located further away (low gain). DCG comprises two essential components: the
gain G and the discount D. Typically, the two components are defined as follows:
Gi = 2yi − 1 is the gain that document di, with relevance yi, brings to the final
ranking, and Di = log2 (1 + π[i]) is the discount of the document’s gain according
to its position π[i] in the list. As it can be easily seen, due to this definition of
discount, a very relevant document in the last position contributes much less to
DCG than in the first position. The IDCG, instead, is the ideal DCG computed
exactly like the DCG but on the ideal ranking produced through the ground truth.
The DCG(π, Y) is defined as follows.

DCG(π, Y) =

|D|∑
i=1

Gi

Di

=

|D|∑
i=1

2yi − 1

log2(1 + π[i])
. (3.1)

Note that several other ranking metrics can be similarly formulated with dif-
ferent gains G and discounts D and with proper normalisation.

36 CHAPTER 3. BACKGROUND AND STATE OF THE ART

The normalisation through the IDCG serves to prevent the model from favour-
ing long queries since queries with a lot of candidate documents are likely to have
a higher DCG. Furthermore, this allows for the comparison of queries of different
lengths.

Real-world applications of information retrieval systems mostly focus on opti-
mising the effectiveness of the top-k results, aligning with observed user behaviour
[62]. Users tend to concentrate their interest on the initial k (e.g., 5/10) results
when scanning a list of items rather than examining the entire extensive list. IR
metrics naturally accommodate this behaviour by introducing a cutoff threshold
k, leading to truncated versions of metrics. For example, NDCG@k evaluates the
goodness of the ranking only for the top-k ranked documents. Truncated met-
rics are particularly relevant in evaluating rankers applied in real scenarios. So,
due to the empirical risk minimisation principle, optimising a truncated metric is
expected to be more effective than optimising its un-truncated counterpart.

The truncated version of NDCG can be easily computed by adding to the
DCG formula in Equation 3.1 an indicator faction 1[π[i] ≤ k] that returns 1
for documents ranked within the cutoff k and 0 otherwise. Straightforward, this
applies also to the IDCG. The NDCG@k(π, Y) is defined as follows:

NDCG@k(π, Y) =
DCG@k(π, Y)

IDCG@k(π, Y)
=

1

IDCG@k(π, Y)

|D|∑
i=1

Gi

Di

1[π[i] ≤ k]. (3.2)

Note that the truncated version of NDCG maintains the same characteristics
as its un-truncated counterpart, e.g., the definition in [0, 1] and the possibility to
compare queries of different lengths.

Finally, the overall effectiveness of a ranker on a set D can be computed as the
average NDCG (or NDCG@k) across all queries in D.

NDCG@k =

|D|∑
i=1

NDCG@k(πi, Yi), (3.3)

For the sake of readability, hereinafter, we use the notation NDCG@k instead
of NDCG@k(π, Y) when there is no ambiguity with the average NDCG, and the
query and its ranking are easily drawn from the context.

3.2.3 Learning Algorithms

In this section, we delve into the state-of-the-art in the domain of Learning to
Rank. Specifically, this section is divided into three major research areas within
the field of Learning to Rank: effectiveness, efficiency, and fairness.

3.2. LEARNING TO RANK 37

3.2.3.1 Effectiveness

As mentioned above, most IR metrics consider the ranking generated on the pre-
dicted document scores. This inherently ties the result of the metric with the
order of the documents; consequently, the ranking metrics are non-differentiable
and flat-everywhere [22, 122].

Unlike traditional machine learning methods, an objective function that in-
cludes IR metrics cannot be optimised directly using gradient descent techniques.
This makes it incompatible with gradient-based optimisation, making the opti-
misation of IR metrics a significant challenge in the field of Learning to Rank.
Nevertheless, proficient ranking models hold paramount importance across a wide
spectrum of Information Retrieval systems. As a result, there has been a compet-
itive pursuit to tackle this problem from various perspectives.

Several solutions have been devised to solve the LtR paradigm with ML. The
main approaches to solve this problem are categorised into three classes: pointwise,
pairwise, and listwise approaches [101].

Pointwise Pointwise approaches treat each document in the training set inde-
pendently of others and without considering the query’s context. Consequently,
they disregard the inherent ranking structure. In the Pointwise approach, the
training process typically resembles supervised classification or regression. The
main objective of the loss function is to predict each document individually and
minimise the error between the predicted outcome and the document’s ground
truth relevance [153, 102]. Some examples of pointwise algorithms include McRank
[102], which employs Gradient Boosting Trees to address ranking problems as mul-
ticlass classification tasks. It leverages a classification model capable of assigning a
probability to each document, indicating its membership to different grades. These
expected grades are then used for ranking. Another algorithm is Subset Ranking
[53], which minimises a surrogate loss function defined on regression errors, which
is bounded for DCG.

Pairwise Pairwise approaches reformulate the ranking problem into pairwise
classification or pairwise regression tasks. While these approaches still disregard
the ranking structure, they maintain the separation by queries. The input is
transformed into preference pairs of documents within the same query. If document
di is more relevant than dj (i.e., yi > yj), then the pair (di, dj) is a preference pair,
indicating that document di should be ranked ahead of dj in the output list. These
preference pairs can be treated as instances, with the intra-pair order serving as
their labels in a new classification problem. The optimisation problem aims to
minimise the number of errors committed in ranking pairs of documents. Exiting
classification methods can be used to train a classifier.

38 CHAPTER 3. BACKGROUND AND STATE OF THE ART

Among the pairwise algorithms, one notable approach is RankNet [26], which
is a pairwise strategy that optimises a probabilistic loss function by mapping the
model’s output to a learned probability. There’s also a version of RankNet that
employs gradient boosting, known as GBRank [68]. Another well-known approach
is AdaRank [182], which utilises boosting to learn weak rankers that minimise the
pairwise misranking error. These weak rankers are then combined linearly to make
predictions. Another example of a pairwise approach is Support Vector Machines
for Ranking (Ranking SVM) [80], which constructs pairs of documents and trains
a model to order these pairs through the SVM [52] algorithm.

Pairwise approaches typically optimise a convex upper-bounds of the pair mis-
ranking error. However, this optimisation does not directly imply an improvement
in the ranking metric, thus leading to a mismatch between model optimisation and
effectiveness on the desired metric.

Listwise The listwise approach tackles the ranking problem more naturally by
incorporating information about the entire ranking list into the optimisation pro-
cess. A listwise approach finds the optimal permutation of all available documents
for a given query. This approach maintains the group structure of ranking, al-
lowing for a more direct integration of ranking evaluation measures into the loss
functions. In this scenario, conventional Machine Learning strategies cannot be
directly applied.

Listwise approaches can be broadly categorised into two groups. The first
group approximates the ranking metric using a smooth surrogate, as seen in Soft-
Rank [161] and ApproxNDCG [142]. The second group employs heuristics to con-
struct a smooth surrogate loss function as did for ListNET [37], ListMLE [178],
XENDCG[22], and LambdaRank [25]. ListNET minimises the cross-entropy be-
tween the ground truth and the model’s score distribution. On the other hand,
ListMLE formulates LtR as a problem of minimising the likelihood loss func-
tion, which is equivalent to maximising the likelihood function of a probability
model. In contrast, XENDCG [22] is similar to ListNET but defines an alternative
cross-entropy loss function that guarantees strong theoretical properties, such as
optimising a convex bound on mean NDCG.

Furthermore, LambdaRank is an approach initially designed for artificial neural
networks that does not attempt to optimise a loss function but heuristically defines
the loss gradient λ with respect to the model’s score. LambdaRank is a pairwise
algorithm that aims to order pairs of documents correctly; however, it embeds
the information about the entire list’s status within the optimisation process. For
this reason, it can also considered a listwise approach. A variant of LambdaRank,
called LambdaMART [27, 176], combines LambdaRank with MART (Multiple
Additive Regression Trees) [69]. LambdaMART is widely regarded as the state

3.2. LEARNING TO RANK 39

of the art in Learning to Rank. In a related work [173], the authors proposed a
probabilistic framework for ranking metric optimisation called LambdaLoss. They
demonstrated how LambdaRank is a special configuration with a well-defined loss
in their framework. This work also provided specific loss functions with theoretical
guarantees, bounding the NDCG and ARP [89].

Moreover, the Plackett-Luce model [116, 140] has been widely used to model
a probabilistic distribution over rankings [23, 83, 179]. It defines a probability
distribution over permutations of items based on their scores or relevances.

Typically, listwise and pairwise approaches outperform pointwise approaches due
to their ability to consider and leverage the inherent structure and relationships
within the ranking, which is crucial for accurately modelling the complex nature of
ranking tasks. As mentioned above, listwise approaches directly optimise ranking
metrics, incorporating the status of the entire ranking list into the optimisation
process. While pairwise approaches focus on capturing relative preferences be-
tween pairs of items, which can be more informative than the absolute judgments
used in pointwise approaches. This inherent consideration of ranking dynamics
and relationships provides listwise and pairwise approaches with an advantage in
effectively modelling and optimising for ranking tasks [37, 178].

3.2.3.2 Efficiency

Research in the Learning to Rank (LtR) domain is not solely focused on enhanc-
ing the effectiveness of rankers but also on improving the efficiency of algorithms
during training and operational phases. This becomes particularly crucial when
the system interacts with users, who seek faster response times to maintain their
engagement with the platform [3, 129, 38].

In this regard, several strategies have been developed to expedite the model’s
operational phase. For instance, in [114, 28], documents unlikely to reach top
positions are halted early during the evaluation to reduce the overall prediction
time. Furthermore, various forest pruning strategies aim to reduce the number
of trees to traverse during the prediction phase. In [172], the authors devised
a strategy to identify and safely remove trees while preserving the accuracy of
the original model. Additionally, in [113], trees that contribute minimally to the
ranking are removed, significantly reducing the ensemble size.

Finally, some research focuses on making the most of the available hardware.
For example, Ye et al. in [184] developed RapidScorer in which the particular
representation of the trees has allowed them to exploit the SIMD instructions of
modern CPUs (parallel computation). Dato et al. in [56] and Lucchese et al. in
[112] proposed QuickScorer with different optimisations to make the sequential
tree evaluation more cache-aware.

40 CHAPTER 3. BACKGROUND AND STATE OF THE ART

3.2.3.3 Fairness

Although this thesis does not focus on fairness in LtR, it is important to mention
some solutions within the LtR domain regarding this issue. In fact, fairness in
LtR is a burgeoning field of research that is gaining traction, addressing the equity
of models [71, 59]. Traditional ranking models generate a static list of items
ordered by their relevance to the user information need. However, within this list,
there could be items equally relevant to the user’s query. Users typically scan
the list from the first to the last item, stopping when they find a relevant one.
Consequently, items placed at the top of the list receive more exposure. This
static ordering inherently creates some disparity among equally relevant elements.
Once the model defines an order for the elements in the list, it remains fixed.
Various research studies have emerged to tackle this issue, attempting to create a
stochastic ordering based on document relevance [95, 155]. Thus, documents with
equal relevance should have an equal probability of appearing before each other.
Consequently, each time the model is queried, a new order is sampled based on
the learned probabilities. For instance, in [135, 136], an efficient solution using
Plackett-Luce models is proposed to address fairness and relevance problems in
LtR. Additionally, in [23], a stochastic framework is presented that samples a list
order from a distribution defined by raw scores.

Additionally, the datasets used to train machine learning models, including
those in Learning to Rank, may contain biases related to gender, race, nationality,
and so on. Unfortunately, the model can learn these biases, leading to discrimi-
natory rankings. Addressing and mitigating these biases is a critical concern in
LtR to ensure fair and unbiased outcomes in item ranking. Various fairness-aware
approaches and techniques are being developed to tackle this important challenge
in the field of information retrieval and machine learning. Solutions like DELTR
[187] and Fair-PG-Rank [155] introduce the concept of fairness during the op-
timisation phase, aiming to create fairness models with respect to the notion of
exposure. DELTR optimises for equal exposure, defining exposure as a document’s
probability of appearing in the top position of a ranking for a specific query. On
the other hand, Fair-PG-Rank defines exposure as expected attention, which the
authors equate to the expected position bias. These approaches incorporate the
concept of fairness to ensure that items have a balanced chance of appearing at
top positions in the ranking, promoting a fair and equitable ranking outcome.

3.2.4 Benchmark Datasets

In this final section of the thesis, we introduce the LtR datasets used to evaluate
the effectiveness of the proposed solutions. The datasets mentioned in this section
are the only ones used in the experimental part; other LtR datasets are not men-

3.2. LEARNING TO RANK 41

Table 3.1: Datasets properties.

Dataset #feat. #queries #doc. query len. %non-rel.

Istella-X [115] 220 10,000 26,791,447 2,679.14 99.83
Istella-S [111] 220 33,018 3,408,630 103.24 88.61
Istella-F [56] 220 33,018 10,454,629 316.63 96.29
Yahoo! Set 1 [42] 519 29,921 709,877 23.73 26.09
MSLR-30K [141] 136 31,531 3,771,125 119.60 51.47

Table 3.2: Relevance distribution among datasets. The table reports the number
of documents for each integer relevance label in the set Y .

Relevance distribution
Dataset 0 1 2 3 4

Istella-X [115] 26,745,076 26,604 5,108 9,619 5,040
Istella-S [111] 3,020,406 83,167 135,989 93,957 75,111
Istella-F [56] 10,066,405 83,167 135,989 93,957 75,111
Yahoo! Set 1 [42] 185,192 254,110 202,700 54,473 13,402
MSLR-30K [141] 1,940,952 1,225,770 504,958 69,010 30,435

tioned in this thesis. All the datasets used are publicly available, and each dataset
provides graded relevance labels, ranging from 0 (indicating irrelevance) to 4 (indi-
cating perfect relevance), associated with the vectors representing query-document
pairs.

Five LtR datasets were used in the experiments presented in this thesis, and
they are detailed below. Furthermore, Table 3.1 and Table 3.2 summarise the
fundamental details of the datasets.

• Istella-F [56]: The Istella LETOR full dataset, abbreviated as Istella-F
for simplicity, is provided by TISCALI ITALIA S.p.A., an Italian company
that operates the ISTELLA Web search engine (http://www.istella.it). The
dataset comprises 33,018 queries and 220 features representing each query-
document pair, resulting in a total of 10,454,629 documents. The substantial
number of documents in the dataset makes it particularly useful for large-
scale experiments on the efficiency and scalability of Learning to Rank so-
lutions. The dataset is provided with a split between training and test sets
based on an 80%-20% scheme. However, during our experimental phase, we
also needed a validation set. For this reason, we extracted the validation
set from the training set, resulting in a split in train, validation, and test

http://www.istella.it

42 CHAPTER 3. BACKGROUND AND STATE OF THE ART

sets based on a 60%-20%-20% scheme. The dataset can be downloaded from
http://quickrank.isti.cnr.it/istella-dataset.

• Istella-S [111]: The Istella-S LETOR dataset, referred to as Istella-S, is
the smallest within the Istella dataset family. Istella-S is a smaller sam-
ple of the Istella-F dataset. Like Istella-F, it comprises 33,018 queries
and 220 features representing each query-document pair. Istella-S is made
up of 3,408,630 documents generated by sampling non-relevant documents
to an average of 103 docuemnts per query. It has been divided into train,
validation, and test sets following a 60%-20%-20% scheme. The dataset can
be downloaded from http://quickrank.isti.cnr.it/istella-dataset.

• Istella-X [115]: The Istella-X (eXtended) LETOR dataset, for the sake
of brevity, named Istella-X, is the largest within the Istella dataset
family, comprising 10,000 queries and 220 features representing each query-
document pair. Istella-X consists of 26,791,447 documents, holding the
highest proportion of non-relevant documents, accounting for 99.83% of the
total. This characteristic was designed to evaluate the effectiveness of LtR
models in highly unbalanced queries, such as those found on the World Wide
Web. The dataset was constructed using 10,000 queries sampled from a real-
world Web search engine log. For each query, up to 5, 000 results were
retrieved from a collection of 44,830,467 Web documents and ranked based
on a BM25F [186] scoring function. The dataset has been split into train,
validation, and test sets following a 60%-20%-20% scheme. The dataset us
is made available at http://quickrank.isti.cnr.it/istella-dataset.

• MSLR-30K [141]: The Microsoft Learning to Rank Datasets consists of two
sets, one containing approximately 30,000 queries and the other about 10,000
queries. In the experiments conducted in this thesis, we utilised the larger
one and referred to this set asMSLR-30K. This dataset is the most balanced
in terms of the number of relevant documents, representing approximately
half of the dataset. MSLR-30K is provided in five folds, each containing
a different permutation of five splits of the dataset. In each fold, three
splits are allocated for the training set, one for the validation set, and the
remaining one for the test set. In the experiments presented in this thesis,
we specifically used Fold 1. Each fold provides a split in training, validation,
and test sets that follow the 60%-20%-20% scheme. The MSLR Web dataset
is available at http://research.microsoft.com/en-us/projects/mslr.

• Yahoo! Set 1 [42]: The Yahoo! Learn to Rank Challenge version 2.0
dataset comprises two distinct datasets: Set 1 and Set 2. In the experiments

http://quickrank.isti.cnr.it/istella-dataset
http://quickrank.isti.cnr.it/istella-dataset
http://quickrank.isti.cnr.it/istella-dataset
http://research.microsoft.com/en-us/projects/mslr

3.2. LEARNING TO RANK 43

conducted in this thesis, we utilised Set 1 and referred to this set as Ya-
hoo! Set 1. This dataset is the smallest among those used in this thesis,
consisting of only 709,877 documents with an average of approximately 24
documents per query. It also contains the highest proportion of relevant
documents among those mentioned here, with about 74% of the documents
being relevant. The dataset has been divided into training, validation, and
test sets following a 60%-20%-20% scheme. The dataset can be downloaded
at https://webscope.sandbox.yahoo.com/catalog.php?datatype=c.

https://webscope.sandbox.yahoo.com/catalog.php?datatype=c

44 CHAPTER 3. BACKGROUND AND STATE OF THE ART

3.3 Summary

In this chapter, we introduced the fundamental concepts and knowledge necessary
to understand our contribution to the domain of Learning to Rank. Below is a
brief summary of the key concepts discussed in this chapter.

• Information Retrieval: In this section, we explored Information Retrieval,
a research field at the intersection of computer science and information sci-
ence. IR addresses the challenge of retrieving useful information from
cluttered and unstructured vast collections of data. Finally, IR widely
employs machine learning techniques to address this challenge.

• Learning to Rank: In this section, we provided a detailed definition of the
Learning to Rank problem and elucidated its distinctions from classification
and regression. Specifically, in LtR, each instance comprises a user’s query
and a set of candidate documents assigned to it. The aim of the model
is to generate a ranking over these documents such that the most relevant
ones are ranked at the top of the list.

• Evaluation Metrics: Evaluation metrics in the domain of Learning to
Rank must take into account the order of documents within the list. Among
the presented metrics, there is the Normalized Discounted Cumulative
Gain, which assesses the contribution (gain) of each document based on
its relevance to the query and discounts based on its position within the
ranked list.

• Learning Algorithms: In this section, we introduced one of the main
challenges of Learning to Rank, namely the impossibility of optimising LtR
metrics directly due to their intrinsic connection with item ordering. We
presented the state of the art in LtR, categorised into pointwise, pairwise,
and listwise approaches. The state of the art covered in this section encom-
passes algorithms to improve effectiveness, efficiency, and fairness in the
domain of learning to rank.

• Benchmark Datasets: In the last section of this chapter, we introduced
five benchmark datasets used to evaluate the effectiveness and efficiency of
learning-to-rank algorithms. Each dataset possesses distinct characteristics,
varying in the number of documents, the proportion of relevant and non-
relevant documents in the dataset, and the number of queries.

Chapter 4

Surrender on Outliers and Rank

In this chapter, we discuss the work titled “Filtering out Outliers in Learning to
Rank”, in proceedings as a full paper at the ICTIR ’22: The 2022 ACM SIGIR
International Conference on the Theory of Information Retrieval. Further details
can be found in the reference [121].

Outlier data points are recognised to have a negative impact on the learning
process of regression or classification models, yet their influence in the learning-to-
rank scenario has not been thoroughly investigated thus far. Traditional Learning
to Rank learning algorithms assume that training sets do not contain noise and
outliers [60]. However, this assumption is not always valid, especially in a con-
text where human-labeled datasets are used. Additionally, the features of query-
document vectors may be insufficient to distinguish relevant documents from non-
relevant ones [40].

For instance, in a pairwise context, which still constitutes a significant part of
the state of the art in LtR, the presence of outliers, noise, or erroneously labelled
documents leads to a quadratic growth in the number of incorrect pairs. Conse-
quently, it becomes necessary to consider the potential presence of issues/errors
during training.

This work primarily consists of two contributions. First, we discovered the
presence of documents within the training set that the model consistently strug-
gles to rank correctly. Building upon this discovery, we coined the term “consistent
outliers” in LtR and provided a precise definition. Second, we designed Surrender
on Outliers and Rank (SOUR), a learning-to-rank method that detects and re-
moves consistent outliers before constructing an effective ranking model. Through
extensive experiments, we demonstrate that removing these consistent outliers be-
fore retraining a new model leads to statistically significant improvements in terms
of NDCG. Furthermore, SOUR outperforms state-of-the-art denoising and outlier
detection methods.

Additionally, we present a thorough experimental analysis, investigating the

45

46 CHAPTER 4. SURRENDER ON OUTLIERS AND RANK

behaviour of the proposed algorithm across different query types and assessing
the impact of outlier removal on the model’s raw predictions. Furthermore, we
substantiate the effectiveness of our algorithm by comparing it to several variants
inspired by related but less close works.

The chapter is structured as follows: Section 4.1 introduces the related work
specific to this study. Section 4.2 provides the definition of consistent outliers in
LtR, while Section 4.3 presents our algorithm called SOUR for detecting consistent
outliers and training effective models on clean datasets. In Section 4.4, we define
the experimental setting and the baselines used for comparison. Moreover, in
Section 4.5, we provide the main results of our contribution: the performance
of SOUR in terms of NDCG compared to the baselines. Section 4.6 includes a
series of detailed analyses we performed to better understand the capabilities of
the proposed algorithm. Finally, Section 4.7 summarises the contents covered in
the chapter and outlines some future works.

4.1 Related Work: Outliers

The presence of outliers in the context of Learning to Rank poses a significant
problem, yet it has received little attention from the research community so far.
This is surprising considering the potential harmfulness of outliers and the high
probability of having them due to the nature of the labels used to generate the
ground truth. The labels themselves, representing the relevance of instances, can
vary considerably based on various subjective considerations, thus introducing a
potential source of noise and ambiguity into the learning process.

Despite the lack of thorough research into robustness against outliers in the
field of Learning to Rank, it is essential to examine the current state of the art
in this direction. Some relevant studies provide approaches and methodologies
that can serve as baselines for the solution proposed in this work. Exploring these
baselines is crucial to understand better what strategies have been proposed to
address this issue.

In literature, one of the most common strategies for managing outliers in
machine learning is sample selection [104, 132], where outliers are found and
treated differently than legitimate samples (removed [90], learned separately [79],
reweighed [60], etc.). A sample selection strategy that removes outliers is designed
in [104]. The authors introduce a sample selection algorithm named Isolation For-
est, which employs a forest of decision trees to decide whether an instance is an
outlier. Isolation Forest trains each decision tree in the forest on a random subset
of the training set. The randomisation helps create a diversified set of decision
trees that collectively form the Isolation Forest. Then, for each instance in the
training set, the depth of the leaf reached in each individual tree is calculated, i.e.,

4.1. RELATED WORK: OUTLIERS 47

how many nodes the instance passes through before reaching the leaf. Finally, the
average depth across all trees is computed. Instances with a lower average depth
are deemed outliers as it indicates that they were isolated more rapidly and are
potential outliers. Consequently, instances that exhibit, on average, a shorter path
from the root to the leaves within the forest are classified as outliers. The Isolation
Forest algorithm effectively and efficiently identifies outliers, particularly in larger
datasets, because it uses random decision trees and efficient depth calculation
methods.

An early notable work is Robust C4.5 [90], a variant of the C4.5 algorithm [143],
designed to be robust against outliers. The algorithm iteratively trains decision
trees, pruning the dataset at each phase by removing misclassified instances from
the training set. This iteration continues until no classification errors occur in
the training set. While applied to a classification task, this technique shares some
similarities with our method but is more aggressive and specific to classification.

In [177], the authors argue that strategies based on selective sampling are
sensitive to changes in noise distribution. Furthermore, the difficulty in identifying
outlier instances may lead to the removal of several legitimate instances. Another
approach to handling noisy labels within the dataset is robust learning. Many of
these strategies attempt to define a robust loss function in the presence of noise
in the training set [189, 64, 148, 75, 177]. An attempt in the LtR context was
made in [40], utilising a pairwise meta-learning approach that takes a linear model
as input and generates an outlier-robust model. The input model hypothesis is
refined through a non-linear sigmoid function. The sigmoid meta-ranker performs
a non-convex optimisation that converges to a local optimum close to the original
hypothesis. The algorithm leverages the non-linearity of the sigmoid function to
suppress the effect of outliers, essentially softening the large negative loss generated
by incorrectly ordered pairs.

A more recent attempt at achieving noise-robust training in Learning to Rank
is PeerRank [177], leveraging the PeerLoss [107] loss function. In this article, they
defined an instance-level loss function ℓpeer employing the PeerLoss loss function
to address ranking problems. They defined an instance-level loss function for both
pointwise and pairwise settings. Since, as mentioned in Section 3.2.3.1, pairwise
and listwise methods are more effective than pointwise ones, this work primarily
focused on their pairwise definition.

For a pairwise instance x i = (da, db) and the pairwise label yj = 1[ya > yb], the
pairwise instance-level loss function is defined as ℓ(yi, h(x i)). In their PeerRank
method, the pairwise instance-level loss function ℓpeer introduces synthetic noise
instances by randomly selecting pairs of documents from the training set and
pairing them with random labels.

48 CHAPTER 4. SURRENDER ON OUTLIERS AND RANK

The ℓpeer loss function can be summarised with the following definition:

ℓpeer(yi, h(x i)) = ℓ(yi, h(x i))− ℓ(yj, h(x k)), (4.1)

where x k is a pair of documents randomly selected from the set of candidate
documents D such that x i ̸= x j and yj = Bernoulli[p = 0.5].

PeerRank minimises this loss function with respect to both the original training
instances and the synthetic noisy ones. Thereby, the ℓpeer loss function punishes
models that correctly rank such noisy instances.

4.2 Contribution 1: Consistent Outliers in LtR

In this section, we introduce the first contribution of our work, which encompasses
the discovery of consistent outliers and the formal definition we provided. Specifi-
cally, we observed that given a learning algorithm L that trains a model F through
an iterative process, for each iteration i, there are documents consistently ranked
incorrectly by the model Fi, updated at iteration i. This suggests that the learning
algorithm is not able to correct the model’s error in the subsequent iterations of the
training process, maintaining the error for the entire training and compromising
the model’s final effectiveness.

Based on this discovery, we provided a formal and precise definition to better
characterise this phenomenon; we formulated the definition of consistent posi-
tive/negative outliers.

However, before providing the definition of consistent outliers, we need to dis-
tinguish between positive outliers and negative outliers. To do this, we recall that
the most commonly used quality metrics use a cutoff threshold k to manage the
users’ behaviour of focusing only on the top results of the ranking. This effectively
constraints the metric evaluation to the contribution of the top-k ranked docu-
ments. This allows us to define an area of interest in the top-k positions of the
ranking.

Intuitively, we define positive outliers as those relevant documents that are
“pushed out” of the top-k scored documents, and negative outliers as those non-
relevant documents that are “pushed in” to the top-k ranks. Relevant documents
are documents with a relevance label greater than zero, and non-relevant docu-
ments have a relevance label equal to zero. Below, we provide a formal definition
of positive and negative outliers:

Definition 1 (Positive Outlier). Given a set of candidate documents D, the rank-
ing π produced by a ranker, and a threshold k, a document di ∈ D is said to be a
Positive Outlier if a) it is relevant, i.e., it has a relevance label greater than 0, b)
it is ranked below rank k, i.e., π[i] > k and c) there is at least one document with
a relevance label equal to 0 within rank k.

4.2. CONTRIBUTION 1: CONSISTENT OUTLIERS IN LTR 49

4 2 0 3 0 1 0

1 2 3 4 5 6 7

top-k negative
outlier

positive
outlier

...

4 2 1 0 0

1 2 3 4 5 6 7

top-k

...

2 2

misranked

4 3 1 0 0

1 2 3 4 5 6 7 ...

0 0

y

n

rank
position

document relevance

Figure 4.1: Outlier vs. misranked documents. Top: the document at rank 3
occupies a position in the top-k (k = 4) that might be filled by the relevant
document at rank 6 and vice versa. Bottom: even if the ranking is incorrect, the
top-k are either full of relevant documents or all possible relevant documents.

Definition 2 (Negative Outlier). Given a set of candidate documents D, the
ranking π produced by a ranker, and a threshold k, a document di ∈ D is said to
be a Negative Outlier if a) it is not relevant, i.e., with a relevance label equal to 0,
b) it is ranked within rank k, i.e., π[i] ≤ k and c) there is at least one document
below rank k with a relevance label greater than 0.

It is also crucial to distinguish between outlier and misranked documents. We
refer to misranked documents for all other ranking errors that do not fit either of
the above two definitions. Figure 4.1 illustrates the distinction between outlier
documents (top) and misranked documents (bottom). Note that no (negative)
outliers exist when the top-k positions only include relevant documents, and no
(positive) outliers exist when all the relevant documents fall in the top-k positions.

As mentioned above, we discovered the presence of outliers consistently ranked
wrongly during the training phase, therefore, we have to take into account all the
training iterations. Thus, given a learning algorithm L, we are interested in every
ranking produced by the intermedial model (inter-model) Fi after i iterations of
the training process. Let Fi be an intermedial model learnt until iteration i, i.e.,

50 CHAPTER 4. SURRENDER ON OUTLIERS AND RANK

an ensemble of size i; we look at all the positive/negative outliers produced by Fi

for each iteration of L in a given iteration interval. Thus, we look for documents
that are consistently considered outliers across the iteration interval, as defined
below.

Definition 3 (Consistent Positive/Negative Outliers). Given a list of candidate
documents D, a learning algorithm L, two iteration-interval bounds s and e, and
let Fi be the inter-model learnt until iteration i by the learning algorithm L. We
define as Consistent Positive/Negative Outliers those documents that are posi-
tive/negative outliers in the ranking generated by a Fi, for every iteration i ∈ [s, e].

We argue that a model finds it more difficult to properly rank these documents
due to the outlier nature of these instances rather than the learning algorithm’s
limitations.

4.3 Contribution 2: SOUR Learning Algorithm

This section encapsulates the main contribution we brought with the research
presented in this chapter. Here, we present our Learning to Rank algorithm,
which leverages outlier removal during the training process. The main idea is to
remove outlier instances before training rather than utilising the entire dataset,
giving rise to our method named Surrender on Outliers and Rank (SOUR). The
algorithm, outlined in Algorithm 3, comprises three main steps: i) base model
training, ii) outlier detection and removal, and iii) final model training.

The SOUR algorithm takes as input three hyper-parameters: s, e, and t. The
hyper-parameters s-tart and e-nd define the iterations of the learning algorithm
during which the search for consistent outliers occurs. The hyper-parameter t
specifies the type of outlier to remove from the training set and assumes the values
t ∈ {pos,neg,all}, representing positive, negative, or their union, respectively.
A detailed explanation of how the algorithm works follows.

During the first step (line 13), an inter-model Fi is trained until iteration i
on the complete training set D using a specified LtR learning algorithm L and a
metric Z. In an ideal scenario, Fi represents the optimal model achievable with L
at iteration i.

The second and core step of the algorithm (lines 14–23) consists of using the
inter-model Fi to identify outliers in the training set. For each iteration i ∈ [s, e],
the algorithm uses the inter-model Fi to score and rank every set of candidate
documentsDj ∈ D, and for candidate set SOUR compute the positive and negative
outliers according to Definitions 1, 2, respectively denoted with Opos

i and Oneg
i .

Then, it computes the set of consistent outliers by intersecting all the positive or
negative outliers found so far, i.e., Opos =

⋂
iOpos

i and Oneg =
⋂

iOneg
i . It also

4.3. CONTRIBUTION 2: SOUR LEARNING ALGORITHM 51

Algorithm 3 SOUR Algorithm.

1: function SOUR(D,L, t, s, e, Z)
2: Input
3: D : training set
4: L : learning algorithm
5: t : type of consistent outliers to remove
6: s : iteration to start collecting outliers
7: e : iteration to end collecting outliers
8: Z : evaluation metric
9: Output
10: F : final model

11: F0 ← ∅
12: for i = 1 to e do
13: Fi ← L(Fi−1,D, Z) ▷ Train inter-model at iteration i

14: if i ≥ s then ▷ Start to look for outliers after s iteration
15: k ← Z.cutoff ▷ Get metric cutoff
16: Oneg

i ← {not relevant documents with rank (by Fi) ≤ k
17: above a relevant document with rank > k}
18: Opos

i ← {relevant documents with rank (by Fi) > k
19: below a not relevant document with rank ≤ k}

20: Oneg ← ⋂
i∈[s,...,e]Oneg

i ▷ Compute consistent outliers

21: Opos ← ⋂
i∈[s,...,e]Opos

i

22: Oall ← Opos ∪ Oneg

23: O ← Pick(Opos,Oneg,Oall, t) ▷ Select outliers

24: F ← L(∅,D \ O, Z) ▷ Train on the clean dataset
25: return F

considers the set Oall = Opos ∪ Oneg. Depending on t ∈ {neg, pos, all}, the
function Pick (line 23) selectes one of Oneg, Opos or Oall to be the set of outliers
removed by SOUR.

During the last step (line 24), a new model is trained after removing the outliers
O from the input training set D, and the resulting model is eventually returned.

The SOUR algorithm incurs an additional cost of running L a second time. The
cost of this step is primarily linked to the choice of the learning algorithm used.
For instance, with tree-based learning algorithms like Gradient Boosting Decision

52 CHAPTER 4. SURRENDER ON OUTLIERS AND RANK

Table 4.1: Datasets properties.

Istella-X MSLR-30K Yahoo! Set 1

#queries 10,000 31,531 29,921
avg. query length 2,679.14 119.60 23.72
#documents 26,791,447 3,771,125 709,877

relevance label distribution
0 26,745,076 1,940,952 185,192
1 26,604 1,225,770 254,110
2 5,108 504,958 202,700
3 9,619 69,010 54,473
4 5,040 30,435 13,402

%non-relevant documents 99.83% 51.47% 26.09%

Trees, this additional cost is usually not a concern due to their inherent efficiency.
It’s also worth noting that the cost of outlier detection during the second step
is negligible compared to the cost of running L. In our experimental section, we
demonstrate that the size of the outlier set O is relatively small. Consequently,
running L on the cleaned dataset is nearly as efficient as with the original dataset.
However, the resulting model yields notable performance improvements.

Finally, it’s important to note that SOUR primarily focuses on metrics utilis-
ing a cutoff, like NDCG, ERR, Precision, etc., since they align with our defined
notions of positive and negative outliers. However, SOUR can also effectively ac-
commodate other metrics that don’t rely on a threshold k by appropriately adding
and tuning a dummy threshold k through the hyper-parameters.

4.4 Experimental Setup

We conduct experiments on three publicly available datasets: Istella-X,MSLR-
30K, and Yahoo! Set 1, previously introduced in Section 3.2.4. To avoid
jumping back to Section 3.2.4, the main information about the datasets, useful for
this chapter, is summarised in Table 4.1.

We highlight that they have very different average query lengths. The limited
number of documents in Yahoo! Set 1 allowed us to test the effectiveness of the
proposed algorithm in extreme scenarios. All datasets include graded relevance
labels with a different fraction of non-relevant documents: Yahoo! Set 1 having
26.09% out of 709,877, MSLR-30K with 51.47% out of 3,771,125 and Istella-X
with 99.83% out of 26,791,447.

4.4. EXPERIMENTAL SETUP 53

4.4.1 Baselines and Implementation

In the experimental phase, we compared the effectiveness of the SOUR algorithm
with five different algorithms: the baselines λLGBM and λMART, two algorithms
robust to outliers in the training set IsoLGBM and PeerLGBM, and an alterna-
tive variant of SOUR named SOURlast. All algorithms were built on top of the
open-source LightGBM library [93]. The implementation of SOUR is available on
GitHub1

Note that LightGBM stands for Light Gradient Boosting Machine, and the
trained models are ensembles of decision trees trained with GBDTs. Consequently,
all the models used in the experiments are tree ensembles, implying that the inter-
model Fi is an ensemble trained up to iteration i containing i trees. Below are the
implementation details of each of these algorithms:

• λMART: It is the exact implementation of the LambdaMART algorithm pro-
posed in the article [27]. To train a model with the original implementation
of LambdaMART, it is necessary to tell the LightGBM library not to exe-
cute gradient normalisation. Gradient normalisation is used to normalise the
lambdas for different queries and improve the performance for unbalanced
data.

• λLGBM: It implements the LambdaMART algorithm proposed in the article
but with gradient normalisation designed in the LightGBM library.

• IsoLGBM: It is a combination of the Isolation Forest algorithm and λLGBM.
Specifically, the Isolation Forest algorithm finds the outliers according to its
definition and then creates a clean training set. Finally, this new training
set is used by λLGBM to train the final model. Similar to what SOUR does,
based on the relevance label of the outlier documents found by Isolation For-
est, there are positive/negative outliers according to its outlier definition. In
this case, using a hyper-parameter t = {neg,pos,all}, IsoLGBM trains a
model by removing negative, positive, and both kinds of outlier documents.
For the isolation forest, we adopted the parameters suggested by the au-
thors [104].

• PeerLGBM: It is a robust training algorithm that uses a data augmentation
mechanism. The rationale is to inject the instance-level loss function with
synthetic outlier instances so that the trained algorithm can learn to rank
them poorly. We implemented the loss function in Equation 4.1 defined
in [177] on top of LambdaMART. It should be noted that the PeerRank
implementation proposed in the original article was done on LambdaRank,

1https://github.com/FedericoMarcuzzi/Filtering-out-Outliers-in-Learning-to-Rank

https://github.com/FedericoMarcuzzi/Filtering-out-Outliers-in-Learning-to-Rank

54 CHAPTER 4. SURRENDER ON OUTLIERS AND RANK

which shares the same objective function as LambdaMART; consequently,
the implementation was straightforward.

• SOURlast: It is the same as SOUR, but only the outliers found in the last
iteration of the training phase are removed. Trivially, it is equal to SOUR
with s = e =last iteration.

4.5 Main Results

This work aimed to identify and eliminate outliers within the training set to en-
hance the effectiveness of learning-to-rank models. Consequently, the primary
outcomes of this study revolve around the effectiveness of our solution compared
to the state of the art.

4.5.1 Effectiveness

In this section, we evaluate the model’s performance in terms of the average per-
centage of NDCG@5 and NDCG@10. It is important to note that λMART and
λLGBM are not designed to be robust to outliers, whereas SOUR, SOURlast,
PeerLGBM, and IsoLGBM each implement a different strategy to handle the pres-
ence of outliers in the training set.

Table 4.2 presents the results of each model on the test set alongside the best
hyperparameters for each model. The table includes the size of each model, de-
noted as |F |, expressed in terms of the number of trees (i.e., at which iteration of
GBDTs the training phase has terminated) and the hyperparameters s and t in-
troduced earlier. Additionally, it includes a column |O| as the size of the removed
outlier set.

Each model was trained to a maximum of 1,000 trees with early stopping cri-
teria computed on the validation set. The best hyperparameters were determined
through hyperparameter tuning on the validation set. Further detailed analysis of
models’ hyperparameters is discussed in Section 4.6.1.

The first conclusion that can be drawn from Table 4.2 is that SOUR outper-
forms other algorithms on every dataset and for both NDCG@5 and NDCG@10.
As expected, the smallest improvement is achieved in the Yahoo! Set 1 dataset
due to its small size. However, it is well known how small NDCG improvements
are indeed very relevant [43]. Interesting gains are visible for Istella-X and
MSLR-30K. The improvements brought by SOUR are statistically significant in
most cases. This confirms that the proposed SOUR algorithm is effective and
that further investigation is worthwhile. To measure the statistically significant
improvement of our solution, we used a Fisher’s randomisation test [65] with a one-

4.5. MAIN RESULTS 55

sided p-value. The statistically significant improvements with respect to SOUR
are marked with italic ∗ for p = 0.05 and bold ∗∗ for p = 0.01.

What the results reveal is that, for SOUR, there is no definitive best choice be-
tween consistent negative or positive outliers. The choice depends on the dataset
used but remains consistent across different thresholds of the metric cutoff. How-
ever, as expected, SOUR prefers to remove consistent positive outliers from the
training set of Yahoo! Set 1, given that, as mentioned in Table 4.1, it contains
approximately 74% of positive documents in the dataset. However, due to the very
limited number of documents per query in Yahoo! Set 1, removing a few of such
a small set of documents does not provide significant benefits. Finally, a notable
observation is that SOUR and SOURlast have opposing preferences regarding the
optimal set of outliers to remove.

Regarding IsoLGBM, removing both types of outliers (positive and negative) is
almost always more effective. It’s important to note that Isolation Forest does not
consider the relevance label when looking for outlier documents but relies solely
on the documents’ average path length. Consequently, removing all the outliers it
identifies proves to be more effective than removing only a portion. However, the
outliers found by Isolation Forest are not contextualised to the ranking problem,
and therefore, legitimate documents may also be removed. This translates to lower
performance compared to SOUR.

The PeerLGBM algorithm is the most robust model among the state-of-the-
art competitors. However, it does not achieve statistically superior performance
to SOUR. Although incorporating synthetic outliers during training makes PeerL-
GBM the most robust among competitors, it compromises the model’s learning
process by deviating it from the original data distribution, resulting in lower per-
formance than SOUR on the test set.

The parameter s also appears to follow a non-predictable distribution and needs
to be tuned for each dataset. However, even in this case, it remains similar for
various metric cutoffs k for SOUR and SOURlast. We emphasise that the number
of documents removed by SOUR is quite small; for example, only 1% of the non-
relevant documents are removed from the MSLR-30K dataset. This low number
of removed documents, significantly smaller than IsoLGBM, contributes to SOUR’s
higher effectiveness. Furthermore, the performance of SOURlast confirms that the
effort made by SOUR in identifying consistent outliers is crucial for achieving
better performance. Additionally, as seen in Table 4.2, searching for outliers only
in the last training iteration leads to the removal of many documents. However,
SOURlast allows for two interesting observations. First, the training phase is faster
with significant removal of documents. For instance, when optimising NDCG@5,
SOURlast removes approximately 42% of the documents from MSLR-30K while
maintaining good performance. The second observation is that even by removing

56 CHAPTER 4. SURRENDER ON OUTLIERS AND RANK

Table 4.2: Effectiveness in terms of NDCG (percentage). Statistically significant
improvements w.r.t. SOUR according to Fisher’s randomisation test [65] (with a
one-sided p-value) are marked with italic ∗ (p = 0.05) and bold ∗∗ (p = 0.01).

Model |F | s t |O| %NDCG@5 |F | s t |O| %NDCG@10

Istella-X
λMART 206 67.11 ∗∗ 223 72.72 ∗∗

λLGBM 535 72.82 ∗∗ 585 77.23 ∗∗

PeerLGBM 883 73.32 841 77.49 ∗∗

IsoLGBM 533 all 0.78% 73.11 ∗ 745 all 0.02% 77.39 ∗∗

SOURlast 670 535 neg 0.03% 73.38 811 585 neg 0.08% 77.69
SOUR 617 0 pos 0.01% 73.62 939 800 pos 0.01% 78.04

MSLR-30K
λMART 998 49.97 ∗∗ 979 52.16 ∗∗

λLGBM 802 50.48 ∗∗ 775 52.46 ∗∗

PeerLGBM 1000 50.53 ∗ 991 52.48 ∗∗

IsoLGBM 771 all 6.81% 50.45 ∗∗ 725 all 5.92% 52.44 ∗∗

SOURlast 822 802 pos 42.87% 50.42 ∗ 859 775 neg 1.55% 52.84 ∗∗

SOUR 876 700 neg 1.01% 50.81 928 700 neg 1.01% 53.04

Yahoo! Set 1
λMART 975 74.95 ∗∗ 829 79.04 ∗∗

λLGBM 840 75.24 ∗ 701 79.46 ∗

PeerLGBM 987 75.36 662 79.50
IsoLGBM 989 neg 6.08% 74.88 ∗∗ 648 all 24.95% 79.03 ∗∗

SOURlast 997 840 neg 0.76% 75.28 862 701 neg 2.73% 79.35 ∗∗

SOUR 999 400 pos 23.26% 75.44 941 300 pos 18.20% 79.56

only the outliers found in the last iteration, it is possible to achieve equal or
superior performance compared to the baselines and achieve the second-best result
in many situations, such as in Istella-X.

Finally, the results in Table 4.2 highlight the impact of gradient normalisation,
allowing λLGBM to achieve statistically superior performance to λMART.

4.6 In-Depth Analysis

In this section, we thoroughly explore different hyperparameter values to under-
stand how they affect the model’s behaviour. We then dive into a detailed analysis
of how SOUR performs under various scenarios and deeply analyse the different
strategies used to handle outliers in the training set. Finally, we tried to under-
stand what provides the performance improvement of our approach, and then we

4.6. IN-DEPTH ANALYSIS 57

Table 4.3: SOUR hyper-parameter analysis. The average percentage of NDCG@k
is computed on the Istella-X validation set. The highest values are in bold.

t = neg t = pos t = all
s e |F | %NDCG@10 |F | %NDCG@10 |F | %NDCG@10

0 1000 940 77.02 523 76.86 724 76.96
100 1000 693 76.69 893 76.98 766 76.77
200 1000 870 77.17 451 76.59 587 76.79
300 1000 566 76.88 997 76.84 687 76.84
400 1000 537 76.85 579 76.79 824 76.84
500 1000 971 76.99 626 76.89 718 76.70
600 1000 635 76.94 566 76.67 949 76.84
700 1000 568 76.84 690 76.72 671 76.82
800 1000 624 76.80 939 77.28 679 76.84
900 1000 982 77.17 783 76.83 960 76.85

0 100 762 76.79 998 76.53 936 76.51
0 200 837 77.15 692 76.76 775 76.41
0 300 724 76.92 998 76.85 797 76.83
0 400 912 76.86 709 76.43 692 76.88
0 500 833 77.01 437 76.14 690 76.68
0 600 438 76.74 689 76.96 517 76.28
0 700 627 76.93 824 76.86 507 76.60
0 800 607 76.70 563 76.94 884 76.60
0 900 996 77.07 1000 77.01 973 76.98

experimentally justified our choices by comparing them against alternative vari-
ants.

4.6.1 Hyperparameter Analysis

In this section, we present the analysis for the Istella-X dataset; however, similar
behaviour was also observed for the other datasets. Although the other datasets
exhibited analogous behaviour, they did not provide additional insights into the
functioning of SOUR, so we did not include analyses on hyperparameters for those
datasets. It’s important to note that in this work, SOUR is trained using a GBDT
learning algorithm, where each iteration of the learning algorithm corresponds to
a tree. For the sake of clarity, hereinafter, we referred to the learning algorithm’s
iterations as “trees”.

Table 4.3 includes the NDCG@10 of SOUR on the Istella-X validation set

58 CHAPTER 4. SURRENDER ON OUTLIERS AND RANK

while varying the hyperparameters s (start) and e (end), and removing one of
three different sets of consistent outliers at a time: Oneg, Opos, or Oall, based on
the parameter t ∈ {neg, pos, all}.

For every set of consistent outliers identified for each (s, e) pair as presented in
Table 4.3, we trained an ensemble F using a maximum of 1, 000 trees with early
stopping criteria on the validation set. The resulting ensemble size is indicated in
the table as |F |.

We report results on the two most interesting scenarios we found. In the first
scenario, we looked for consistent outliers in outliers found by all the latest trees
in the forest (e = 1000). In the second scenario, we considered consistent outlier
documents that were found outliers in the initial trees (s = 0). Additionally, we
provide results for the scenario with s = 0 and e = 1000, which involves removing
each document that resulted in being an outlier in every single tree of the forest.

In general, the results exhibit close performance, but notable differences can be
observed, particularly with the all strategy consistently yielding inferior results.
On average, the most favourable outcomes are attained when e = 1000. This
aligns with our expectations; the initial trees are still on an unstable path along
the gradient descent. Consequently, the outlier documents at the initial trees
might significantly differ from those identified by the final model. On the contrary,
when fixing e = 1000 and adjusting s, we can overlook errors in the initial trees
and concentrate on outlier documents identified by the final trees of the ranking
algorithm.

In Figure 4.2, we reported the number of documents removed while varying
the hyperparameters of SOUR. Generally, the number of outliers is notably small,
ranging from approximately 2,000 to a maximum of around 12,000. Maintaining
e = 1000 and adjusting s results in a larger number of document removals. As
discussed earlier, this is primarily attributed to the significant instability of the
initial trees. This instability tends to reduce the intersection among the outlier
sets Oi found in the window i ∈ [s, e]. Hence, as the results in Table 4.3 suggest,
when s is not small, not only a greater quantity but also a greater quality of the
consistent outliers is expected.

Referring to Table 4.3, the optimal outcomes were observed with t = pos,
s = 800, and e = 1000, resulting in the removal of approximately 2,400 documents
from a dataset containing over 26 million instances. This study demonstrates that
removing a limited number of documents suffices to attain statistically significant
improvements. In the subsequent analysis, we maintain e = 1000 and select the
remaining parameters based on the performance observed on the validation set.

Concluding the investigation of the t hyperparameter, Figure 4.3 showcases
the behaviour on the Istella-X validation set for the optimal configurations of
SOUR, denoted in boldface in Table 4.3. This comparison includes the baseline

4.6. IN-DEPTH ANALYSIS 59

100 300 500 700 900

e

2K

4K

6K

8K

10K

12K

#
co

n
si

st
en

t
ou

tl
ie

rs

fixed s = 0
t = neg

t = all

t = pos

0 200 400 600 800

s

2K

4K

6K

8K

10K

12K

fixed e = 1000
t = neg

t = all

t = pos

Figure 4.2: Number of consistent outlier documents removed by SOUR from
Istella-X dataset when varying s, e and t. Hyperparameters s and e vary with
a step of 100 iterations. Diamonds are the best s values in correspondence to the
highest NDCGs in Table 4.5 for each t.

λLGBM model. Notably, SOUR consistently outperforms the baseline across all
t configurations. Each SOUR variant exhibits a steeper NDCG curve, achieving
superior accuracy even at the earlier stage of the training process. The plot, en-
compassing 100 early stopping iterations, illustrates how SOUR exhibits continued
accuracy improvement as additional trees are utilised compared to λLGBM.

4.6.2 Model-based vs. Data-based Outliers

There are two common methods for detecting outliers, which we refer to as data-
based and model-based. The former consists of finding instances that do not fit
the data distribution; in contrast, the latter strategy is to spot instances that are
hard to classify correctly by a given model. SOUR falls into the second category.
Figure 4.4 shows the effect of Isolation Forest [104] as a method to detect out-
liers. As mentioned before, we implemented a variant named IsoLGBM where an
Isolation Forest is used to remove outliers from the dataset before training the
final λLGBM model. As for SOUR, based on parameter t, we filter out one of
the three consistent outliers sets: positive, negative, or both kinds of consistent
outliers. For the Isolation Forest, we adopted the hyperparameters suggested by

60 CHAPTER 4. SURRENDER ON OUTLIERS AND RANK

200 300 400 500 600 700 800 900 1000

#trees

75.0

75.5

76.0

76.5

77.0

N
D

C
G

@
1
0

(%
)

λLGBM

SOUR t = neg, s = 200, e = 1000

SOUR t = pos, s = 800, e = 1000

SOUR t = all, s = 0, e = 1000

Figure 4.3: Performance in terms of NDCG@10 achieved by SOUR when varying
t on Istella-X validation set.

the authors [104].
Figure 4.4 shows the performance of IsoLGBM on varying t compared to SOUR

and the λLGBM baseline. The model’s performance is measured in terms of
NDCG@10 on the validation set of Istella-X. The NDCG curves of IsoLGBM
suggest that t = all is the best setting for this strategy, with interesting improve-
ments over λLGBM. However, the performance achieved by SOUR is better than
those of IsoLGBM, thus allowing us to conclude that the proposed model-based
approach is more effective than a data-based strategy based on Isolation Forests.

4.6.3 Data Removal vs. Data Augmentation

Amongst the models introduced in this study, PeerRank [177] is the only learning
algorithm implementing robust training through a data augmentation approach.
This approach enriches the training dataset with synthetic outlier instances, en-
abling the trained algorithm to learn to rank them properly. Consequently, we
present PeerLGBM, our tailored implementation of PeerRank through the Light-
GBM library.

Figure 4.4 shows the performance of PeerLGBM compared to SOUR and the
λLGBM baseline. As illustrated in Figure 4.5, PeerLGBM showcases superior
performance compared to λLGBM, aligning closely with the behaviour observed

4.6. IN-DEPTH ANALYSIS 61

200 300 400 500 600 700 800 900 1000

#trees

75.0

75.5

76.0

76.5

77.0

N
D

C
G

@
1
0

(%
)

λLGBM

SOUR t = pos, s = 800, e = 1000

IsoLGBM t = neg

IsoLGBM t = pos

IsoLGBM t = all

Figure 4.4: Performance in terms of NDCG@10 achieved by IsoLGBM when vary-
ing t on Istella-X validation set.

in SOUR; however, SOUR retains the ability to yield better performance.
However, it is noteworthy that two completely opposing strategies (data re-

moval for SOUR vs. data augmentation for PeerLGBM) yield performances so
closely aligned, while IsoLGBM, which employs the same paradigm of data re-
moval as SOUR, achieves lower performance. We attribute this phenomenon to
the fact that the outlier search in IsoLGBM does not take into account the rank-
ing problem, significantly impacting the quality of the outliers being removed.
Conversely, PeerLGBM implements the PeerLoss function defined in Equation 4.1
directly within a learning algorithm designed for ranking (LambdaRank).

4.6.4 Per Query Class Performance

In this section, we thoroughly investigated the behaviour of SOUR and its com-
petitors in two scenarios, comparing their performance in terms of NDCG@10.
Table 4.4 presents a detailed analysis of the effectiveness of SOUR and its com-
petitors across two distinct sets of queries.

Specifically, we divided the MSLR-30K test set into two classes. The set Qo

includes queries with at least one consistent negative outlier, while the set Qc

contains the remaining “clean” queries without consistent negative outlier. So,
being Qtest the set of the query in the test set Dtest, the clean-queries set is defined

62 CHAPTER 4. SURRENDER ON OUTLIERS AND RANK

200 300 400 500 600 700 800 900 1000

#trees

75.0

75.5

76.0

76.5

77.0

N
D

C
G

@
1
0

(%
)

λLGBM

SOUR t = pos, s = 800, e = 1000

PeerLGBM

Figure 4.5: Performance in terms of NDCG@10 achieved by PeerLGBM on
Istella-X validation set.

as Qc = Qtest \Qo.
We used SOUR to compute the consistent negative outlier sets on the MSLR-

30K test set during the training of λLGBM. We computed a set of consistent
negative outliers for different values of the hyperparameter s while keeping fixed
e = 1000. The goal is to measure how the different algorithms improve or worsen
their performance compared to λLGBM on the two different kinds of queries.
Intuitively, an improvement in the queries with outliers Qo and negligible changes
in the remaining queries Qc is expected.

For all algorithms, we use the best configuration reported in Table 4.2, except
for IsoLGBM for which we use the best model trained with t = neg that has 725
trees; to fit the experimental setting that makes use of consistent negative outliers.

The first row of Table 4.4 reports the results on the entire test set Qo ∪ Qc

(intuitively the whole Qtest set), which correspond with the best results reported
in Table 4.2. We observe an interesting behaviour when we vary s to consider
different sets of outliers. All algorithms perform better than λLGBM on the set
Qo. Intuitively, each model deals correctly with outlier documents, and queries
containing them are ranked more accurately. On the other hand, the accuracy over
Qc slightly drops for IsoLGBM and PeerLGBM. This means that these learning
algorithms hinder the performance in the absence of outliers. Indeed, SOUR is
the only algorithm that always improves over Qo and Qc. This confirms what

4.6. IN-DEPTH ANALYSIS 63

was mentioned earlier: the PeerLoss utilised in PeerLGBM deviates the model
too much from the distribution of correct instances; consequently, it tends to
overspecialise on outlier documents.

The last couple of rows of Table 4.4 includes the special case where negative
outliers are computed by looking at the best validation iteration of λLGBM, i.e.,
only at the iteration s = e = 775. Even in this simplified setting, SOUR is the
only one able to improve on both kinds of queries.

Through this analysis, we can conclude that SOUR effectively handles queries
without consistent outliers. Moreover, it stands out as the only learning algorithm
that can maintain its ability to provide effective ranking to queries containing
consistent outliers, outperforming other learning algorithms.

4.6.5 Outliers Effect on Model Weights

To understand the source of the performance improvement provided by SOUR, we
further investigated the score assigned to outlier documents and compared it with
positive and negative documents both in λLGBM and in SOUR. We used the best
hyperparameter reported in Table 4.2 for both models.

Table 4.5 reports the average score of the 30 leaves of the forest that are
reached by the largest number of negative outliers Oneg. Recall that removing
the documents in Oneg from the training set provides the highest effectiveness for
MSLR-30K). Similarly, we collected the same information for the leaves where the
largest number of positive documents in the top-k (Pk) and negative documents
(N) fall.

The results are very interesting and explain why SOUR can achieve such an
increase in effectiveness. We can observe that in both λLGBM and SOUR, the
negative outlier documents, on average, receive scores that are closer to those of
the positive documents rather than the negative ones (see the last table’s row:
avg. 1 − 50). In SOUR, the average score of negative outlier documents slightly
increases, but the gap between positive documents in Pk and negative documents
in N is much larger.

This unexpected phenomenon can be explained by the fact that outlier doc-
uments will always remain outliers, and the model will always struggle to rank
them correctly. However, thanks to SOUR, by removing outlier documents from
the training set, the model is learnt with better weights (in the case of the GBDT-
based model with purer leaves). Consequently, the model can better distinguish
between positive and negative documents (i.e., relevant and non-relevant). In other
words, positive documents that end up in the leaves of a SOUR-trained model re-
ceive a higher score (a stronger upward push to the top positions in the ranking)
than those trained with λLGBM. Conversely, negative documents receive a lower
score (a stronger downward push to the bottom positions in the ranking).

64 CHAPTER 4. SURRENDER ON OUTLIERS AND RANK

Table 4.4: Effectiveness breakdown in terms of NDCG@10 (percentage) over Qo

and Qc on the MSLR-30K test set.

s query type |Q∗| λLGBM IsoLGBM PeerLGBM SOUR

Qo ∪Qc 6306 0.5246 0.5244 0.5248 0.5304

0
Qo 3265 0.4555 0.4558 0.4574 0.4623
Qc 3041 0.5988 0.5982 0.5970 0.6036

100
Qo 4306 0.4647 0.4658 0.4669 0.4717
Qc 2000 0.6537 0.6508 0.6493 0.6569

200
Qo 4504 0.4683 0.4697 0.4706 0.4752
Qc 1802 0.6655 0.6614 0.6601 0.6685

300
Qo 4618 0.4710 0.4726 0.4734 0.4779
Qc 1688 0.6712 0.6664 0.6651 0.6740

400
Qo 4690 0.4725 0.4741 0.4749 0.4794
Qc 1616 0.6758 0.6706 0.6694 0.6786

500
Qo 4742 0.4740 0.4755 0.4764 0.4809
Qc 1564 0.6780 0.6728 0.6712 0.6806

600
Qo 4799 0.4756 0.4768 0.4779 0.4822
Qc 1507 0.6809 0.6761 0.6740 0.6841

700
Qo 4851 0.4764 0.4777 0.4787 0.4830
Qc 1455 0.6855 0.6805 0.6783 0.6885

800
Qo 4906 0.4780 0.4792 0.4803 0.4846
Qc 1400 0.6882 0.6832 0.6805 0.6912

900
Qo 4957 0.4794 0.4806 0.4816 0.4859
Qc 1349 0.6908 0.6858 0.6831 0.6940

best
Qo 5051 0.4809 0.4822 0.4833 0.4877
Qc 1255 0.7008 0.6945 0.6917 0.7026

Through this analysis, we can conclude that SOUR does not improve its ability
to detect outliers (which is expected, as SOUR did not see them at training time),
but SOUR has a better capability of distinguishing between positive and negative
documents.

4.6. IN-DEPTH ANALYSIS 65

1K

3K

5K

7K

9K

11K

13K

15K

#
ou

tl
ie

r
d

oc
u

m
en

ts

|Opos| per iteration on Istella-X

not an outlier for Fi
outlier for Fi

10K

30K

50K

70K

90K

110K

130K

#
ou

tl
ie

r
d

oc
u

m
en

ts

|Oneg| per iteration on MSLR-30K

100 300 500 700 900

#trees

10K

35K

60K

85K

110K

135K

160K

185K

#
ou

tl
ie

r
d

oc
u

m
en

ts

|Opos| per iteration on Yahoo! Set 1

75.6%

12.6%

2.3%

0.2%

0.1% %
ou

tlier
frequ

en
cy

after
i

trees

87.7%

33.7%

8.4%

1.2%

0.2% %
ou

tlier
frequ

en
cy

after
i

trees

100.0%

100.0%

98.1%

37.8%

2.9% %
ou

tlier
frequ

en
cy

after
i

trees

Figure 4.6: Number of outlier documents per iteration found in each training set
while training with λLGBM and optimising NDCG@10. The results are limited to
those documents found outliers for at least one iteration of the learning process.
The documents are sorted by their outlier classification frequency.

66 CHAPTER 4. SURRENDER ON OUTLIERS AND RANK

Table 4.5: Exit leaves average score on MSLR-30K test set at different trees of
the λLGBM and SOUR forests.

λLGBM SOUR
tree Pk Oneg N Pk Oneg N

1 0.038 0.031 -0.022 0.044 0.036 -0.022
10 0.170 0.111 -0.174 0.177 0.144 -0.183
20 0.269 0.176 -0.293 0.283 0.208 -0.366
30 0.284 0.182 -0.413 0.371 0.277 -0.470
40 0.353 0.274 -0.532 0.392 0.315 -0.622
50 0.425 0.197 -0.645 0.437 0.260 -0.663

avg. 1–50 0.257 0.161 -0.358 0.280 0.207 -0.395

4.6.6 Consistent vs. Frequent Outliers

In this section, we analysed if the strict consistent property of consistent outliers
defined in Definition 3 is fundamental or if it is possible to relax our definition
with a frequent version.

To do so, we designed pSOUR, a variant of SOUR that removes frequent outliers
rather than consistent outliers. In detail, the original SOUR algorithm removes
from the dataset, all documents that are consistently outliers in an interval [s, e] of
the training iterations. Instead, pSOUR removes documents found outliers during
the whole training phase with frequency larger than p%, i.e., at least a p% of the
trees during training. Therefore, pSOUR is a less restrictive variant of SOUR as
it does not require documents to be outliers in all the iterations between s and e.

By comparing pSOUR and SOUR, we want to answer whether it is effective to
consider documents that are outliers in all interactions from the s-th to the e-th
or whether it is sufficient to detect frequent outliers.

Figure 4.6 shows for each training iteration which document is considered an
outlier based on λLGBM. For the sake of clarity, in Figure 4.6, we only included the
documents being outliers in at least one iteration. Moreover, the y axis is sorted
by the number of times a document resulted in an outlier during the entire training
process. The hourglass-shaped plots show that the number of outlier documents
is typically reduced iteration after iteration, except for a bunch of documents that
are almost always and consistently considered outliers. Fixing the p parameter of
pSOUR corresponds to tuning how many documents starting from the bottom of
the plots should be removed from the training.

In Table 4.6, we summarise the performance of pSOUR in terms of NDCG@10
on the test set of MSLR-30K. For each value of p in Table 4.6, we collected the
negative frequent outliers Oneg

p , then we removed Oneg
p from the training set, and

4.6. IN-DEPTH ANALYSIS 67

Table 4.6: Effectiveness in terms of NDCG (percentage) achived by pSOUR with
t = neg, on MSLR-30K test set by varying p. The highest value is in bold.

|F | NDCG@10 p |F | NDCG@10 p

676 0.5169 10% 799 0.5274 91%
869 0.5208 20% 836 0.5268 92%
994 0.5226 30% 817 0.5269 93%
865 0.5219 40% 926 0.5278 94%
754 0.5233 50% 839 0.5268 95%
896 0.5258 60% 859 0.5274 96%
964 0.5271 70% 885 0.5276 97%
750 0.5260 80% 976 0.5289 98%
924 0.5279 90% 932 0.5275 99%

SOUR t = neg s = 700 928 0.5304

finally we trained a model. What this analysis shows is that as p increases, the
performance of pSOUR also increases up to p = 90%. With small values of p, the
strategy removes many negative documents, including those documents that are
marked as outliers for a few iterations. Those documents may not be outliers but
rather good negative documents to keep in the dataset; removing them is harmful
to the model. Beyond p = 90%, results are stable, with the best performance
achieved at p = 98%.

Finally, we can see that the highest NDCG value obtained by pSOUR in the
test set (in boldface) is lower than the best performance of SOUR. Thus, although
pSOUR can remove instances that are not useful for training, the SOUR strategy
can produce more effective models. This highlights that removing documents
consistently found as outliers is better than removing frequent outlier documents.

4.6.7 Removing vs. Exploiting Outliers

So far, we observed that consistent outliers are hard to rank correctly; therefore,
we decided to remove them from the training. The following question arises:
could we resort to the curriculum learning technique proposed by Bengio et al.
in [9] to properly exploit those hard instances? According to curriculum learning,
a delayed injection of difficult documents into the training set results in more
accurate models. In this section, we provide an in-depth analysis of the possibility
of exploiting the outliers through a curriculum learning strategy with a delayed
injection of outliers.

To answer this question, we subdivide the consistent negative outliers found in

68 CHAPTER 4. SURRENDER ON OUTLIERS AND RANK

200 300 400 500 600 700 800 900 1000

#trees

50.0

50.5

51.0

51.5

52.0

52.5

53.0

N
D

C
G

@
1
0

(%
)

λLGBM

SOUR t = neg, s = 700, e = 1000

SOURcurr t = neg

Figure 4.7: Performance in terms of NDCG@10 achieved by SOURcurr onMSLR-
30K test set.

different forest stages into five sets: consistent negative outliers that appear only
in the intervals [0, 50], [0, 200], [0, 500], [0, 800] and [0, 900]. During the training
phase, we inject each set in the training set when the number of boosting iterations
exceeds the right end of their interval. We call this strategy SOURcurr.

Figure 4.7 shows the effectiveness in terms of NDCG@10 of the learning al-
gorithms on the MSLR-30K test set. The results show how using a curriculum
learning strategy to gradually learn the hard instances (i.e., the consistent outliers)
does not fit well in this scenario. As a result, the effectiveness of SOURcurr is far
from SOUR and close to λLGBM only on the last iterations. We can not treat
these outliers as instances of different difficulty, but they must be removed entirely
from the beginning of the training phase.

4.6.8 Robustness to Outlier Frequency

In this section, we analyse the behaviour of SOUR and λLGBM on MSLR-30K
dataset with different amounts of outliers. The analysis focuses on testing SOUR
capability to detect and remove outliers during the training phase and how this
affects the effectiveness at the prediction phase, compared to a baseline λLGBM
model trained on the whole synthetically-noised dataset.

In particular, we manually added synthetic outliers in MSLR-30K training

4.6. IN-DEPTH ANALYSIS 69

set and validation set by flipping each document relevance label equal to 0 into a 4
with a probability n = {0.05, 0.075, 0.1}. Let Dn

train and Dn
valid be respectively the

synthetic training set and synthetic validation set, we perform training on Dn
train

and early stopping on Dn
valid. Model evaluation is done on the original test set,

and the results are summarised in Figure 4.8.
Since we introduce synthetic outliers with labels greater than 0, we train SOUR

with t = pos to remove consistent positive outliers. To study the behaviour of
SOUR on different search intervals [s, e], we kept fixed e = 1000 and varied the
value of s from 0 to 900 with a step of 100.

From Figure 4.8, it can be seen that as probability n increases, the gap between
the models trained with SOUR and λLGBM increases. This phenomenon appears
since the first boosting interactions of the learning algorithms. All models trained
with SOUR have superior performance with respect to the baseline. In particular,
SOUR with t = pos, s = 0 and e = 1000, achieves the higler effectiveness. In this
setting, SOUR removes documents detected as outliers in every training iteration,
suggesting that most synthetic outliers are always considered outliers from the
very beginning of the learning process.

Furthermore, due to the presence of synthetic positive outliers, using smaller
[s, e] intervals leads to the removal of good positive documents that are being
pushed below the cutoff k for a sufficient number of iterations.

For the sake of truth, SOUR is not able to detect and remove all the syn-
thetic outliers. In fact, as n increases, both SOUR and λLGBM lose part of their
effectiveness.

70 CHAPTER 4. SURRENDER ON OUTLIERS AND RANK

48.2

48.4

48.6

48.8

49.0

49.2

49.4

49.6

49.8

N
D

C
G

@
1
0

(%
)

Flipping probability n = 5%

λLGBM

SOUR t = pos, s = 0

SOUR t = pos, s = 100

SOUR t = pos, s = 200

SOUR t = pos, s = 300

SOUR t = pos, s = 400

SOUR t = pos, s = 500

SOUR t = pos, s = 600

SOUR t = pos, s = 700

SOUR t = pos, s = 800

SOUR t = pos, s = 900

46.4

46.6

46.8

47.0

47.2

47.4

47.6

47.8

48.0

N
D

C
G

@
1
0

(%
)

Flipping probability n = 7.5%

100 200 300 400 500 600 700 800

#trees

43.8

44.0

44.2

44.4

44.6

44.8

45.0

45.2

45.4

N
D

C
G

@
1
0

(%
)

Flipping probability n = 10%

Figure 4.8: Performance in terms of NDCG@10 achieved by SOUR and λLGBM on
MSLR-30K test set, by varying the flipping probability n of changing a relevance
label from 0 to 4 in the training and validation set.

4.7. SUMMARY 71

4.7 Summary

This last section of the Chapter, “Surrender on Outliers and Rank” summarises the
main contribution of this work, its results, and potential future directions starting
from this research.

• Consistent Outliers: In this work, we discovered and defined consistent
positive/negative outliers in Learning to Rank. These outliers are documents
consistently ranked incorrectly during a specific training window.

• Contribution: The main contribution of this work is the design of a new
sample selection strategy named Surrender on Outliers and Rank (SOUR)
for outlier detection and removal of consistent positive/negative outliers
found in multiple iterations of the learning algorithm. SOUR identify and
remove outliers/noise/errors in the training set to ensure higher data quality
for model learning. This strategy ultimately aims to enhance the model’s
effectiveness during the operational phase.

• Main Results: SOUR aims to remove outlier documents from the train-
ing set that can be detrimental to the model learning phase, thus producing
more effective models. Through three publicly available datasets, we demon-
strated how SOUR achieves a statistically significant increase in effectiveness
compared to the state of the art.

• In-Depth Analysis: Through in-depth analyses, we investigated various
aspects of SOUR. We found that incorporating ranking information within
the definition of outliers to look for provides higher data quality and, thus,
more effective models (Section 4.6.2). Removing consistent outliers from the
training set is more effective than using outlier data augmentation strategies.
This is because a data augmentation strategy deviates the model from the
original data distribution it might encounter during the operational phase
(Section 4.6.3). We analysed SOUR ’s behaviour in two queries (with or
without consistent outliers). We observed that models trained by SOUR are
the only ones to achieve both higher effectiveness on instances with outliers
and not to reduce performance on queries with legitimate documents (Sec-
tion 4.6.4). Training with SOUR produces models with cleaner weights (in
this case, purer leaves), significantly impacting the model’s ability to distin-
guish between legitimate positive and negative documents (Section 4.6.5).
We demonstrated the constraint of removing consistent outliers rather than
frequent outliers provides higher effectiveness in the trained model and, thus,
a higher data quality in the training set (Section 4.6.6). We showed that con-
sistent outliers cannot be considered difficult instances to use in a curriculum

72 CHAPTER 4. SURRENDER ON OUTLIERS AND RANK

learning setting, but rather, it is better to remove them permanently from
the training set (Section 4.6.7). Lastly, we demonstrated how SOUR is more
robust than the baselines in the presence of strongly noised training set sce-
narios (Section 4.6.8).

4.7.1 Future Work

Building upon the insights gained from SOUR, potential future work could revolve
around enhancing and refining the existing approach. Here are some directions for
future research:

• Integrating Domain Knowledge: It would be worth exploring new meth-
ods to integrate a finer domain-specific knowledge into SOUR. More knowl-
edge could lead to more refined outlier identification, aligning better with the
specific context or objectives of the application, e.g., enriching the definition
of consistent outliers with documents’ predicted score and feature vector.

• Algorithm Combination: An interesting direction is to exploit the out-
liers removal part of SOUR as a data-cleaning strategy for various learning
algorithms. For example, combining SOUR with PeerLGBM to remove doc-
uments that the model consistently fails to rank correctly, then train models
robust to other types of noise on a consistent-outliers free training set.

• In Training SOUR: Another direction for this research involves dynamic
identification and removal of consistent outliers during the training process.
This approach could enhance SOUR’s efficiency by circumventing the need
for model retraining on clean data.

• Adaptive Hyperparameter: Develop techniques to dynamically adapt
the hyperparameters of SOUR during the training process. An adaptive
approach could ensure optimal outlier removal and improve the efficiency of
the training process.

• SOUR for Other Tasks: Extend the application of SOUR to tasks beyond
learning to rank. Investigate how the concepts and methodologies in SOUR
can be adapted and applied to outlier detection in different domains, such
as classification or regression tasks.

• Outlier Visualisation and Interpretability: Develop techniques to visu-
alise and interpret the outliers identified by SOUR. Providing clear and inter-
pretable insights into the nature and impact of outliers can aid practitioners
in understanding the model’s behaviour and making informed decisions.

Chapter 5

On the Effect of Low-Ranked
Documents

In this Chapter, we illustrate the work titled “On the Effect of Low-Ranked Docu-
ments: A New Sampling Function for Selective Gradient Boosting”, in proceedings
as a full paper at the SAC ’23: The 2023 ACM SIGAPP Symposium on Applied
Computing. Further details can be found in the reference [110].

As mentioned in Section 3.2, the primary application of Learning to Rank is
in Web Search, where, given a user query, the model returns a list of documents
ordered by relevance to the query. The LtR algorithms aim to optimise a ranking
metric such as NDCG or ERR by assigning scores to each query-document vector
based on their relevance by training on gold standard datasets. These datasets
contain up to thousands of queries and millions of documents. They aim to provide
the learning algorithm with positive documents of different relevance grades and
negative documents non-relevant to the user’s needs. However, not all documents
within these datasets are useful examples, and including them in the training
set can compromise the learning phase and the generalisation of the resulting
model. Moreover, large training sets increase training time, a significant concern
in contexts like online learning.

Current research trends in Learning to Rank are predominantly focused on im-
proving model effectiveness by refining objective functions to better approximate
ranking metrics or designing more efficient models through cache-aware algorithms
and model-pruning strategies. However, limited attention has been given to im-
proving the quality of the training set, and in particular, to understanding which
documents are useful during the learning phase. Document selection strategies to
enhance model effectiveness remain underexplored.

To address this gap, the main contribution of this work lies in the definition of a
new document selection strategy called High Low Sampl, for Selective Gradient
Boosting (SelGB) framework. SelGB is a framework that makes use of GBDTs to

73

74 CHAPTER 5. ON THE EFFECT OF LOW-RANKED DOCUMENTS

generate decision tree forests to solve LtR tasks. This framework uses a document
selection strategy called Sel Sampl to select the most informative negative doc-
uments from the training set to learn models from a smaller but more informative
subset of examples.

Our newly devised selection strategy focuses on selecting a percentage of doc-
uments likely to be misranked by the model and a percentage of documents that
the model ranks perfectly. So, it extracts only the most useful documents from the
training set to achieve a higher data quality and a faster training process due to
a smaller training set size. This strategy is crucial in minimising the probability
of misranking between positive and negative documents and preventing the model
from overfitting difficult examples while allowing generalisation over simpler ones.

In detail, we designed High Low Sampl, a new document selection strategy
built on top of SelGB framework, but easily adaptable to other learning algo-
rithms. This strategy allows SelGB to select from the training set: i) all the
positive documents. ii) the most informative negative documents, i.e., the non-
relevant documents ranked highest in the ranking, to highlight the differences
between the positive ones. iii) the less informative negative documents, i.e., the
non-relevant documents ranked lowest in the ranking, to avoid the model from
overfitting on difficult examples and achieving poor generalisation on unseen doc-
uments. We perform an extensive experimental evaluation to show that SelGB
combined with our High Low Sampl outperforms its previous version and the
baseline LambdaMART algorithm. Moreover, we prove how SelGB equipped with
High Low Sampl obtains a speed-up in the training process compared to Lamb-
daMART without compromising the model effectiveness. We show how the lowest-
ranked negative documents selected by High Low Sampl allow the models to
achieve a higher stability and a lower variance. Finally, the reduction in train-
ing time further underscores the practical benefits of our approach in large-scale
applications, especially in scenarios like online learning where efficiency is crucial.

The remainder of this Chapter is structured as follows: Section 5.1 delves into
the related work pertinent to this study. Section 5.2 introduces Selective Gra-
dient Boosting, the framework for which our new selection strategy has been de-
signed. Moreover, in Section 5.3, we present our novel document selection strategy
named High Low Sampl, developed for the Selective Gradient Boosting frame-
work. Section 5.4 defines the experimental setup and the baselines employed for
comparison. Furthermore, Section 5.5 provides the primary outcomes of our re-
search, focusing on performance improvement in terms of NDCG (effectiveness)
and training time duration (efficiency). Section 5.6 provides an in-depth analysis
conducted to gain a comprehensive understanding of the capabilities of Selective
Gradient Boosting when equipped with our selection strategy High Low Sampl.
Finally, Section 5.7 encapsulates the Chapter’s content and outlines potential fu-

5.1. RELATED WORK: SAMPLING STRATEGIES 75

ture research directions.

5.1 Related Work: Sampling Strategies

As mentioned earlier, this work is an improvement over the work proposed by
Lucchese et al. in [115]. Their work introduced a framework called SelGB,
based on the gradient-boosted algorithm. It can be considered state-of-the-art
in LtR algorithms for the re-ranking stage of the IR pipeline in a highly unbal-
anced scenario. SelGB implements a dynamic document selection strategy called
Sel Sampl that, at each stage of the gradient boosting, aims to deal with highly
unbalanced datasets. Since this algorithm is strictly related to our contribution,
we provide a detailed introduction in the subsequent section. Note that SelGB uses
GBDTs, so the related work in this Chapter mainly focuses on learning algorithms
that employ them.

Gradient One-Sided Sampling (GOSS) is a technique utilised in Gradient Boost-
ing to enhance the efficiency of the gradient-boosting model by reducing computa-
tional costs and memory consumption during the training phase. This is achieved
by selectively subsampling the documents in the dataset, focusing on those with
larger gradients, as they contribute more to the learning process. GOSS operates
in two stages: first, it identifies and retains documents with gradients exceeding
a predefined threshold, ensuring crucial data points are not discarded. Subse-
quently, it randomly samples a portion of the remaining documents with smaller
gradients, effectively preserving the overall data distribution. This two-stage ap-
proach allows the model to be trained on a reduced dataset while preserving the
informative documents crucial for accurate model training. These two steps allow
GOSS to facilitate expedited training, making gradient boosting more scalable and
efficient for handling massive datasets.

Another well-known strategy is Stochastic Gradient Boosting (SGB) [70]. SGB
is a prominent machine learning technique widely employed in predictive modelling
and regression tasks. It can be considered as a combination of Random Forest
(Section 2.2.1) and Gradient Boosting Decision Trees (Section 2.2.2). As GBDT,
Stochastic Gradient Boosting iteratively constructs an ensemble comprising mul-
tiple weak learners, typically decision trees, through an adaptive boosting process.
Each tree is trained to predict the residual errors of the previous tree, refining
the overall prediction with each subsequent iteration. What sets SGB apart from
GBDT is the utilisation of stochasticity for both features and training instances
sampling. In the sampling stage, a random subset of the training data is chosen for
training each tree, introducing diversity into the models and reducing overfitting
risks. Moreover, a random subset of features is considered for determining the best
split at each tree node. This stochasticity enhances the model’s robustness and

76 CHAPTER 5. ON THE EFFECT OF LOW-RANKED DOCUMENTS

generalisation by reducing the correlation between trees and allowing for improved
feature space exploration.

It is worth mentioning that Lucchese et al. in [115] has widely proven SelGB
to be more effective than related sampling strategies such as GOSS and SGB.

Different works propose selection strategies that statically pick a set of infor-
mative documents to feed the training process [5, 86]. Among these selection
strategies, there are undersampling techniques that play a vital role in addressing
class unbalance issues within training datasets, especially in large-scale LtR appli-
cations, where the number of relevant and non-relevant instances can significantly
differ. Undersampling techniques aim to mitigate this unbalance by reducing the
number of instances from the overrepresented class (often non-relevant instances).
This rebalancing enhances the model’s ability to learn from both classes more
equitably, resulting in a more accurate and unbiased prediction.

Finally, negative sampling is now a common data augmentation approach for
improving the robustness [107], for dealing with scarcity of negative examples
[171], or for managing unlabelled instances in a semi-supervised scenario [47], and
many other tasks. This is not the case in this work as we do not propose a data
generation method but a novel strategy to select existing non-relevant documents
among the pool of available examples in the given dataset.

5.2 Selective Gradient Boosting

Selective Gradient Boosting (SelGB) is a framework developed by Lucchese et al.
[115] to learn effective models from a highly unbalanced training set in the LtR
re-ranking stage. SelGB implements a dynamic document selection strategy called
Sel Sampl that, at each iteration of gradient boosting, is aimed at dealing with
highly unbalanced datasets. Only the positive and the currently highest-ranked
negative documents are considered for growing the next trees of the gradient-
boosted forest. The authors showed how this selection strategy selects only useful
examples from a very unbalanced set of documents (with a prevalence of negative
examples), resulting in more effective models and reduced training time due to a
reduced number of documents being processed.

To better position our contribution within this context, we must distinguish
the SelGB framework from its selection strategy, denoted as Sel Sampl. In Al-
gorithm 4, we present the pseudo-code for the Selective Gradient Boosting frame-
work, utilising a generic selection strategy referred to as sampl. The function
nextGradientBoostedDecisionTreeIteration trains and adds the next
gradient-boosted decision trees to a given ensemble.

The algorithm takes as input a training set D, the maximum size of the en-
semble N , the hyperparameter n that manages the number of learning algorithm

5.2. SELECTIVE GRADIENT BOOSTING 77

iterations between two calls of the selection strategy, and the selection strategy
samp that perform the selection of a subset of the candidates documents Di for
each query qi. The algorithm iterates over a fixed number of iterations N and,
after every n iterations, creates a new training set D∗ through the document selec-
tion function samp given as input (line 13). The new dataset D∗ is used to train
the model in subsequent n iterations (line 14).

From the above, it can be deduced that the core of SelGB is the document
selection function; different selection faction provides completely different effective
learned models.

The selection function Sel Sampl takes as input the training set D, the en-
semble Fm, learnt until iterationm, and the values of the hyperparameter p ∈ [0, 1].
Given a query qi ∈ D and its set of candidates documents Di, let D

−
i ⊆ Di the set

of negative (non-relevant) documents in the candidate set and D+
i ⊆ Di the set

of positive (relevant) documents in the candidates set, where Di = D+
i ∪D−

i and
D+

i ∩ D−
i = ∅. For every query qi, Sel Sampl creates a new set of candidates

document D∗
i by selecting all the documents within the positive set D+

i and by
selecting from D−

i the p% · |D−
i | documents with the highest score estimated by

the current model Fm. As a result, the final cardinality of the newly candidate set
D∗

i for the query qi is |D∗
i | = |D+

i |+ p · |D−
i |.

Finally, by combining all the D∗
i , the new training set D∗ contains only the

documents
⋃

qi∈D D∗
i . The newly created training set D∗ is used to perform the

subsequent n iterations of the learning algorithm, and then a new selection of
documents is performed.

The p% of the highest-ranked negative documents selected by Sel Sampl are
the most informative negative examples [115]. These documents possess the high-
est scores among negative documents, placing them closer to positive documents
than closer to the top-k positions in the ranking, which are more attractive to
users. As a result, these documents are essential examples for learning effective
rankers that push these documents away from the top positions and from the
positive documents. On the other hand, the remaining (1− p)% of negative doc-
uments have lower scores, making them relatively “easier” for the model to rank.
Hence, Sel Sampl discards them from the training set as they are not informative
enough.

Finally, the pseudo-code in Algorithm 4 is designed to work on GBDTs but can
be easily generalised to handle other learning algorithms. Therefore, any learning
algorithm that processes instances iteratively during the training phase can be
applied (e.g., boosting iteration in GBDTs and epoch in NNs).

78 CHAPTER 5. ON THE EFFECT OF LOW-RANKED DOCUMENTS

Algorithm 4 Selective Gradient Boosting

1: function SelectiveGradientBoosting(D, N , n, sampl)
2: Input
3: D : training dataset
4: N : ensemble size
5: n : # iterations between consecutive selection steps
6: sampl : document selection strategy

7: Output
8: FN : trained ensemble

9: F0 ← ∅
10: D∗ ← D
11: for m = 1 to N do
12: if (m mod n) = 0 then
13: D∗ ← sampl(D, Fm)

14: Fm ← nextGradientBoostedDecisionTreeIteration(Fm−1,D∗)

15: return Fm

5.3 Contribution: A New Sampling Function

To prove the performance of SelGB framework and Sel Sampl selection strategy,
Lucchese et al. released alongside SelGB the Istella-X dataset; the most exten-
sive public LtR dataset ever released in terms of the number of documents per
query, with 99.83% negative examples. However, as we show in the experimental
section, the algorithm does not bring significant improvements in smaller and less
negatively unbalanced datasets like MSLR-30K, or it may even perform worse
than well-known baselines like LambdaMART as in more positively unbalanced
datasets like Yahoo! Set 1.

In this work, we designed a new document selection strategy that overcomes
the limitation of Sel Sampl by improving the selection of the most informative
negative documents to learn more effective models from smaller and higher-quality
training sets. The main contribution of this work is the definition of a new doc-
ument selection function called High Low Sampl that can be given as input
to SelGB. High Low Sampl shares many similarities with Sel Sampl, but de-
spite the last, it does not discard all the lowest-scored (lowest-ranked) negative
examples. Our document selection function takes as input the training set D, the
ensemble Fm, learnt until iteration m, and the values of the two hyperparameters
p1 ∈ [0, 1] and p2 ∈ [0, (1− p1)).

In detail, for each query, qi High Low Sampl creates D∗
i by selecting from

Di all the positive examples in D+
i and a subset of the negative examples in D−

i .

5.3. CONTRIBUTION: A NEW SAMPLING FUNCTION 79

The main difference with Sel Sampl is how the negative examples are selected
from D−

i . Sel Sampl selects from D−
i the p · |D−

i | examples with the highest
score estimated by the current model Fm. Instead High Low Sampl selects the
p1 · |D−

i | examples with the highest score and the p2 · |D−
i | examples with the

lowest score. Even in this case, the current model Fm estimates the score for
each candidate document. Trivially, if p1 = p and p2 = 0%, the two selection
strategies, High Low Sampl and Sel Sampl, coincide. The final cardinality of
the subset D∗

i is |D∗
i | = |D+

i |+(p1+ p2) · |D−
i |. Figure 5.1 graphically depicts how

High Low Sampl creates the new set of candidates document D∗
i for a query qi.

Finally, each D∗
i set is combined to obtain the new training set D∗ for the

subsequent n iterations.

original
query

positive
examples

low-ranked
negative examples

new
 query

high-ranked
negative examples

Figure 5.1: The figure shows how High Low Sampl composes the new set of
candidates document D∗ for the query q. Given the set D ordered in descending
order of (relevance label, predicted score), High Low Sampl selects fromD three
document classes: the positive examples (in green), the highest-ranked negative
examples (in blue), and the lowest-ranked negative examples (in red).

Sel Sampl selects the highest-ranked negative examples to enhance the dis-
crimination between relevant and non-relevant documents and to minimise mis-
ranking risk. Nevertheless, avoiding the model to see the lowest-ranked nega-
tive documents during training can lead to overfitting the highest-ranked neg-
ative documents and lead to models with reduced generalisation capability. In

80 CHAPTER 5. ON THE EFFECT OF LOW-RANKED DOCUMENTS

High Low Sampl, we extended this idea by introducing negative documents
with the lowest scores to balance the attention of the learning algorithm and pre-
vent it from focusing only on the highest-ranked documents.

5.4 Experimental Setup

We performed our experiments on the three publicly available datasets Istella-
X, MSLR-30K, and Yahoo! Set 1 summarised for the sake of simplicity in
Table 5.1. For each dataset, documents are labelled with graded relevance labels
ranging from 0 to 4, where 0 refers to negative documents and a value greater than
1 refers to positive documents. All datasets have a different percentage of negative
examples: Istella-X with 99.81% out of 26,791,447, MSLR-30K with 51.47%
out of 3,771,125 and Yahoo! Set 1 with 26.09% out of 709,877.

Table 5.1: Datasets properties.

Dataset #queries #doc. query len. %non-rel.

Istella-X 10,000 26,791,447 2,679.14 99.83
Yahoo! Set 1 29,921 709,877 23.73 26.09
MSLR-30K 31,531 3,771,125 119.60 51.47

5.4.1 Baselines and Implementation

In the experimental phase, we conducted a comparative analysis of the effective-
ness of SelGB equipped with our document selection strategy High Low Sampl
against two distinct models: the baseline LambdaMART and the original defi-
nition of the SelGB framework that makes use of Sel Sampl selection strategy.
The implementation of SelGBHL is available on GitHub1

Below, we outline the implementation specifics for each of these algorithms.
Note that all the algorithms were developed using the open-source LightGBM
library [93].

• LambdaMART: This implementation adheres faithfully to the LambdaMART
algorithm as presented in the original publication [27], but incorporating gra-
dient normalisation as designed in the LightGBM library.

• SelGBS: This is an implementation of the Selective Gradient Boosting
framework exactly as proposed in [115]; i.e., the one using Sel Sampl.

1https://github.com/FedericoMarcuzzi/On-the-Effect-of-Low-Ranked-Documents

https://github.com/FedericoMarcuzzi/On-the-Effect-of-Low-Ranked-Documents

5.5. MAIN RESULTS 81

• SelGBHL: This implementation represents SelGB enhanced with our doc-
ument selection strategy High Low Sampl.

We applied the gradient normalisation implemented in the LightGBM library
for all the learning strategies. Gradient normalisation is crucial for normalising
lambdas across various queries, thereby enhancing performance for unbalanced
data. It’s worth noting that in the original work by Lucchese et al., gradient
normalisation was not used. Consequently, the performances reported in this study
differ from those presented in [115].

5.5 Main Results

This work aims to design a new document selection strategy for SelGB to construct
higher-quality training sets, aiming for more effective models in the operational
phase. However, this work’s contribution extends to enhancing the efficiency of the
training process for these more effective models. Consequently, the main results
of this work are divided into two sections: the effectiveness of the models during
the operational phase and the efficiency during the training phase.

In the experiments, we compare our solution SelGBHL (i.e., SelGB equipped
with our selection strategy, High Low Sampl) with the baseline LambdaRank,
and the state-of-the-art SelGBS (i.e., the original SelGB equipped with the se-
lection strategy, Sel Sampl).

5.5.1 Effectiveness

Table 5.2 summarises the performance in terms of NDCG@10 achieved by each
learning algorithm on the dataset test set splits. The optimal hyperparameters
were selected through model selection based on the models’ performance attained
on the validation sets. A detailed analysis of the selection of the best hyperparam-
eters p for Sel Sampl and p1 and p2 for High Low Sampl is in Section 5.6.1.
Additionally, to demonstrate that the higher quality of the training set produced
by our selection strategy leads to more effective models even in the initial learning
iterations, we also included NDCG@10 values obtained on the test set after 150,
350, and 550 iterations. The term “Full” refers to the best number of trees in which
the training concluded due to the early stopping criterion; this value may vary for
each model. Note that where the value N/A is reported, the training terminated
early, resulting in an ensemble size smaller than the number of trees reported in
the table.

We used a Fisher’s randomisation test [65] with a one-sided p-value (p = 0.01)
to measure the statistical significance improvement, brought byHigh Low Sampl

82 CHAPTER 5. ON THE EFFECT OF LOW-RANKED DOCUMENTS

Table 5.2: Effectiveness in terms of NDCG (percentage). Statistically significant
improvements w.r.t. SelGBHL according to Fisher’s randomisation test [65] (with
a one-sided p-value) are marked with bold ∗∗ (p = 0.01).

Algorithm
|F |

150 350 550 Full

MSLR-30K
LambdaMART 50.38 ∗∗ 51.86 ∗∗ 52.31 ∗∗ 52.46 ∗∗

SelGBS, p = 40% 50.89 51.97 52.31 ∗∗ 52.62 ∗∗

SelGBHL, p1 = 20%, p2 = 40% 50.98 52.09 52.59 52.97

Yahoo! Set 1
LambdaMART 78.04 ∗∗ 78.89 79.29 79.46 ∗∗

SelGBS, p = 30% 78.19 78.92 79.15 ∗∗ 79.37 ∗∗

SelGBHL, p1 = 40% p2 = 30% 78.29 78.96 79.25 79.58

Istella-X
LambdaMART 75.01 ∗∗ 76.64 ∗∗ 77.22 77.23 ∗∗

SelGBS, p = 1% 77.32 78.58 N/A 78.65
SelGBHL, p1 = 1% p2 = 2% 77.15 78.39 N/A 78.47

to SelGB compared to the competitors. In Table 5.2, when SelGBHL achieves sta-
tistically superior performance to a competitor, we denote it with bold ∗∗ alongside
the performance of the weaker model.

The results reveal that the dataset characteristics heavily influence the effect
of the employed selection strategies. Indeed, we observe distinct behaviours for
each of the three datasets used. Let’s examine the conclusions that can be drawn
for each dataset individually.

In MSLR-30K, the model trained with our approach, SelGBHL with p1 =
20% and p2 = 40%, emerges as the overall best model, showcasing a statisti-
cally significant improvement over both the baseline LambdaMART and SelGBS.
SelGBHL proves to be statistically superior to LambdaMART in all ensemble sizes
reported in table 5.2 and also outperforms SelGBS in the final part of the training
process. It is worth noting that it never achieved an inferior performance to the
two competitors. In this dataset, SelGBS is the second-best, consistently achiev-
ing performance equal to or better than the baseline LambdaMART. Therefore,
selecting only the highest-ranked negative documents did not lead SelGBS to
overfitting on MSLR-30K; however, this definitely resulted in the loss of useful
information. In fact, SelGBHL, which leverages both the highest and the lowest-
ranked negative documents, was able to attain superior performance. Additionally,
SelGBHL includes 40% of the lowest-ranked negative documents and only 20%

5.5. MAIN RESULTS 83

of the highest-ranked ones, in contrast to SelGBS, which includes 40% of the
highest-ranked negative documents. This highlights that SelGBHL can achieve
the highest effectiveness by prioritising the lowest-ranked negative documents over
the highest-ranked ones.

For the Yahoo! Set 1 dataset, the results are slightly different. Once again,
SelGBHL is the superior model, demonstrating statistically significant improve-
ments over its competitors. As concern for SelGBS, in the latter part of the
training, it loses the advantage initially achieved over LambdaMART. This under-
scores that in a positively unbalanced dataset like Yahoo! Set 1, where negative
documents constitute only 26.09% of the dataset, leveraging information from the
lowest-ranked negative documents is essential to train effective models.

Finally, we observe different results also on the Istella-X dataset. In this
scenario, both SelGBHL and SelGBS exhibit the most evident statistically sig-
nificant increments compared to the baseline LambdaMART. However, there’s no
statistical evidence to assert that SelGBHL is superior to SelGBS, and vice versa.
Given that Istella-X comprises 99.83% negative documents, even if only the 1%
of the highest-ranked negative documents is selected, the set of negative documents
is still consistently more prominent than the 0.17% of positive documents. Con-
sequently, this sample of highest-ranked negative documents is sufficiently larger
to encapsulate all the necessary information to distinguish between positive and
negative documents, including the lowest ones. Additional negative documents in
the training set do not yield statistically better results.

We can conclude from these results that using High Low Sampl as the se-
lection strategy allows for creating training sets of higher quality compared to
Sel Sampl. Specifically, it enables achieving better performance in positively
unbalanced datasets (such as Yahoo! Set 1) or balanced datasets (like MSLR-
30K). However, it does not yield improvements, compared to the state of the art, in
strongly negatively unbalanced datasets (like Istella-X), delivering performance
comparable to Sel Sampl.

5.5.2 Efficiency

In this section, we assessed the models’ performance in terms of training efficiency,
where a more efficient training phase leads to reduced training time. To conduct
this experiment, we utilised a machine equipped with an Intel(R) Xeon(R) Sil-
ver 4110 CPU @ 2.10GHz and an operating system Ubuntu 20.04.4 LTS. The
experiments were executed without parallelisation in a single thread.

The results presented in Table 5.3 represent the training times required to train
the best models identified through model selection on the validation set concerning
models’ effectiveness. The specific hyperparameters yielding the best performance
are referred to as best, which can be found in Table 5.2.

84 CHAPTER 5. ON THE EFFECT OF LOW-RANKED DOCUMENTS

Table 5.3: Efficiency in terms of training time (milliseconds). The label best means
the hyperparameters found through model selection with respect to effectiveness.

Algorithm
Dataset

Istella-X MSLR-30K Yahoo! Set 1

training time per tree
LambdaMART 13.2 sec 2.8 sec 1.8 sec
SelGBS, best 3.7 sec 2.2 sec 1.6 sec
SelGBHL, best 3.9 sec 2.3 sec 1.6 sec

total training time
LambdaMART 128.7 min 35.7 min 21.3 min
SelGBS, best 25.3 min 30.0 min 18.3 min
SelGBHL, best 28.5 min 34.3 min 22.7 min

percentage of training set
LambdaMART 100.0% 100.0% 100.0%
SelGBS, best 1.1% 58.4% 81.6%
SelGBHL, best 3.1% 79.0% 91.2%

Each model used for the result in Table 5.3 has a different number of trees at
which the training process terminates. Therefore, alongside the total training time
for each model, we provide the time spent to train a single tree (training time per
tree). This result allows us to understand the actual impact of the training set
size on the training time. Lastly, Table 5.3 also displays the size of the training
set used to train the respective model.

Note that we can fairly compare the efficiency of LambdaMART with SelGBHL

and SelGBS since the cost of executing the selection strategy is negligible and
can be ignored. The reason for this is that the asymptotic complexity of both
High Low Sampl and Sel Sampl is O(n log n), where n is the number of neg-
ative documents within the query. In detail, the selection strategies’ cost lies in
the sorting algorithm used to rank the negative documents to retrieve the lowest-
ranked and highest-ranked negative documents. However, this cost can be amor-
tised since, at each iteration of the learning algorithm, the algorithm orders the
examples to evaluate the model’s performance. Consequently, High Low Sampl
and Sel Sampl have no overhead on the training time. Moreover, due to the
lower number of documents being processed at training time, with the same num-
ber of iterations, the cost of training SelGBS and SelGBHL is theoretically less
than or equal to that of LambdaMART.

The training times reported in Table 5.3 demonstrate that, in general, both
SelGBHL and SelGBS are more efficient than LambdaMART as they operate

5.6. IN-DEPTH ANALYSIS 85

on smaller training sets. However, SelGBHL tends to be slightly slower than
SelGBS due to the additional cost of processing the lowest-ranked negative ex-
amples. Nevertheless, this cost is relatively small, especially considering the sig-
nificant improvement in model effectiveness. Consequently, we can assert that the
proposed selection strategy enables statistically superior performance in terms of
effectiveness compared to the state of the art (i.e., SelGBS) while maintaining
comparable efficiency. Moreover, it is consistently more efficient and effective than
the baseline (i.e., LambdaMART).

Note that there are minor discrepancies where LambdaMART takes less time
to train than the other two strategies. This discrepancy arises from the different
termination points of the training process. Since early stopping on the validation
set was used as the training stopping criterion, it is possible that the training with
LambdaMART terminated earlier than those of SelGBS or SelGBHL, resulting
in a lower total training time even though it used the entire training set. More-
over, the training times per tree show that SelGBHL and SelGBS strategies are
consistently faster in training a single tree, confirming this motivation.

In conclusion, we can infer that the reduction in training time is not directly
proportional to the size of the training set. For instance, when examining the
performance on Istella-X where LambdaMART utilises 100% of the training set
and SelGBS only 1%, the reduction in training time is not a factor of 100 but
rather approximately a factor of 5.

5.6 In-Depth Analysis

The in-depth analysis we conducted is divided into understanding the effect of the
hyperparameter p of Sel Sampl used in SelGBS and two hyperparameters p1
and p2 of High Low Sampl used in SelGBHL. Finally, we thoroughly examined
the effect of the lowest-ranked negative documents on the model, understanding
why their inclusion leads to increased model effectiveness. These detailed analyses
were entirely conducted on the MSLR-30K dataset.

5.6.1 Hyperparameter Analysis

In this section, we detail the effect of the selection strategies Sel Sampl and
High Low Sampl by varying the values of their hyperparameters.

Each model is trained with up to 1,000 trees, using early stopping criteria based
on the model’s performance on the validation set. In the extensive study conducted
by Lucchese et al. [115], they proved that the best value for the Sel Sampl’s hy-
perparameter n is 1. For this reason, we kept hyperparameter n = 1 for both
SelGBS and SelGBHL also in this work. With this preliminary setting, we

86 CHAPTER 5. ON THE EFFECT OF LOW-RANKED DOCUMENTS

0 200 400 600 800 1000

#trees

49.5

50.0

50.5

51.0

51.5

52.0

52.5

N
D

C
G

@
1
0

(%
)

LambdaMART

SelGBS, p = 1%

SelGBS, p = 2%

SelGBS, p = 3%

SelGBS, p = 4%

SelGBS, p = 5%

SelGBS, p = 10%

SelGBS, p = 20%

SelGBS, p = 30%

SelGBS, p = 40%

SelGBS, p = 50%

Figure 5.2: Performance in terms of NDCG@10 achieved by SelGBS when varying
hyperparameter p on MSLR-30K validation set

performed hyperparameter tuning on the remaining selection strategy hyperpa-
rameters, selecting the best models through model selection on the validation sets.

Firstly, we analysed the behaviour of SelGBS by varying the hyperparameter
p of Sel Sampl. Figure 5.2 displays the NDCG@10 over training for each model
learned by SelGBS on the MSLR-30K validation set as we varied the parameter
p. For completeness, the figure also includes the LambdaMART baseline.

As depicted in Figure 5.2, the performance of SelGBS deteriorates as p de-
creases, indicating that an overly aggressive removal of negative examples com-
promises the model’s performance. Consequently, SelGBS is unable to enhance
the NDCG@10 performance compared to the baseline on the MSLR-30K dataset.
This behaviour is also observed in the Yahoo! Set 1 dataset. Conversely, the
performances on Istella-X align with those reported in the original work [115],
where the best performance is achieved for very small values of p.

Subsequently, we analysed the effect of the hyperparameters p1 and p2 used in
our selection strategy SelGBHL. In order to find the best values for the hyperpa-
rameters p1 and p2 and avoid an exhaustive quadratic grid search, we started the
analysis by selecting the best three p values from the hyperparameter tuning of
SelGBS as candidate best values for hyperparameter p1 of High Low Sampl.
Specifically, the chosen p1 values are 20%, 30%, and 40% for MSLR-30K and
Yahoo! Set 1, and 0.25%, 0.5%, and 1.0% for Istella-X. We then fine-tuned

5.6. IN-DEPTH ANALYSIS 87

200 400 600 800 1000

#trees

49.5

50.0

50.5

51.0

51.5

52.0

52.5

N
D

C
G

@
1
0

(%
)

LambdaMART

SelGBHL, p2 = 3%

SelGBHL, p2 = 10%

SelGBHL, p2 = 20%

SelGBHL, p2 = 25%

SelGBHL, p2 = 30%

SelGBHL, p2 = 35%

SelGBHL, p2 = 40%

SelGBHL, p2 = 45%

SelGBHL, p2 = 50%

Figure 5.3: Performance in terms of NDCG@10 achieved by SelGBHL with p1 =
20%, when varying hyperparameter p2 on MSLR-30K validation set

the value of p2 for each candidate p1.
In Figure 5.3, we illustrated the performance of SelGBHL by varying p2 while

keeping the hyperparameter p1 fixed at 20%. Even in this case, the figure includes
the LambdaMART baseline. For clarity, Figure 5.3 only displays models that
achieve NDCG@10 higher than LambdaMART on the validation set. Through
the model selection on the validation set, we discovered that p1 = 20% is the
optimal value among the three p1 values tested on MSLR-30K. As concerns the
other datasets, the best values for the hyperparameters p1 and p2 are the ones
reported in table 5.2.

In Figure 5.3, it is evident that, unlike the case with SelGBS, models trained
with SelGBHL consistently attain superior NDCG@10 performance throughout
the training phase compared to LambdaMART. These findings confirm that in-
cluding the lowest-ranked negative examples is crucial for training effective models.

Furthermore, Figure 5.3 highlights how High Low Sampl improves the mod-
els’ effectiveness even in the early training iterations. This further validates the
impact that High Low Sampl has on efficiency during the training phase. For
instance, the model trained with p2 = 40% achieves the same performance as
LambdaMART, but with 600 trees instead of 800, saving 200 iterations. Alterna-
tively, a more aggressive pruning of the training set can be applied, for example,
with p2 = 3% or 10% to achieve similar performance to LambdaMART while sig-

88 CHAPTER 5. ON THE EFFECT OF LOW-RANKED DOCUMENTS

nificantly reducing the size of the training set and, consequently, a significative
reduction of the training time.

5.6.2 The Impact of the Lowest Ranked Documents

In this last segment of the experimental section, we conducted a thorough anal-
ysis to evaluate the influence of the lowest-ranked negative examples on model
predictions. This analysis aimed to underline why High Low Sampl is superior
to Sel Sampl. Specifically, we sought to emphasise how disregarding the lowest-
ranked negative examples can detrimentally affect the model’s effectiveness.

We carried out this examination on models trained using both SelGBS and
SelGBHL, clearly demonstrating that the models trained with SelGBHL are more
stable and effective due to the inclusion of the lowest-ranked negative examples.

To accomplish this, we selected a subset of queries from the MSLR-30K train-
ing set and observed how documents’ ranks vary after each tree in both SelGBS

and SelGBHL. We used the best hyperparameters identified through model selec-
tion, as detailed in Table 5.2; specifically, p = 40% for Sel Sampl and p1 = 20%
and p2 = 40% for High Low Sampl. Figure 5.4 depicts the result of this analysis
for one specific query (query ID: 1349), but we highlight that the same behaviour
was observed in all queries in the sample.

Figure 5.4 shows with a colour the label of the document ranked at the i-th
position (on the x axis) after the t-th tree of the forest (on the y axis). The
green colour represents positive documents (i.e., documents with a relevance label
greater than 0). For the sake of simplicity, we sampled only queries where positive
documents have the same relevance label. The red colour stands for those docu-
ments that are consistently scored the lowest, i.e., those that occur in the bottom
p2 portion of the rank positions after each of the 1,000 trees. We computed this
set for SelGBHL (on the right-hand side), and we report their rank positions
also for SelGBS (left-hand side). We denote this set with D−∩

HL. The light grey
colour is used for the remaining non-relevant documents. The width of each rank
position is proportional to the logarithmic discount factor of NDCG to highlight
the top-ranked positions that contribute the most to the ranking quality.

There are several interesting insights we can provide with this fine-grained
analysis (see Figure 5.4).

• i) the documents within the set D−∩
HL are roughly the same across boosting

iterations. This might be expected from its definition. In fact, after 1,000
trees, D−∩

HL always cover the 50% of the lowest p2 portion of the ranking.
Computing the same statistic on SelGBS leads to a poor 10%, and just
15% at iteration 66.

5.6. IN-DEPTH ANALYSIS 89

1 2 3 4 5 6 7 8 9 20 40

rank position

0

100

200

300

400

500

600

700

800

900

1000

b
o
os

ti
n

g
it

er
at

io
n

SelGBS, p = 40%

D+

D− \D−∩HL
D−∩HL

1 2 3 4 5 6 7 8 9 20 40

rank position

SelGBHL, p1 = 20%, p2 = 40%

.

Figure 5.4: Document rankings (x axis) at each boosting iteration (y axis) for
both SelGBS (left) and SelGBHL (right) for query 1349 sampled from MSLR-
30K training set. The rank position widths are proportional to the logarithmic
discount factor of NDCG. In green colour are query documents with relevance > 0.
In red colour are documents consistently scored low by High Low Sampl in
1,000 boosting iterations. The remaining non-relevant documents are in light grey
colour.

• ii) the negative examples in D−∩
HL have a very stable rank in SelGBHL (red

squares, right-hand side), but the same documents have a cluttered behaviour
during the training with SelGBS (red squares, left-hand side).

90 CHAPTER 5. ON THE EFFECT OF LOW-RANKED DOCUMENTS

• iii) also positive examples not placed in the top-k position (rightmost green
traces) have a very stable behaviour in SelGBHL (right chart); this does
not hold for SelGBS (left chart), where their ranking varies significantly,
tree after tree.

• iv) in SelGBHL, some positive examples require a few more iterations to
reach the top-k position of the list, but in the end, they reach higher positions
than in SelGBS. As a result, equipping Selective Gradient Boosting with
the proposed selection strategy High Low Sampl produces more effective
models.

All of the above confirms that the ranking provided by SelGBHL is of higher
accuracy than SelGBS. Some of the reasons for this accuracy might be found in
the stability provided by the lowest-ranked negative document. The set of lowest-
ranked negative documents provides the model with interesting information about
the training process that translated into higher stability, reduced variance, and
the opportunity to better refine the predicted document scores.

5.7. SUMMARY 91

5.7 Summary

In this section, we provide a comprehensive overview of the main results and
contributions of the study introduced in this Chapter titled “On the Effect of Low-
Ranked Documents”. The summary delves into the implications of the proposed
High Low Sampl selection strategy within the SelGB framework.

• Selective Gradient Boosting: The framework SelGB utilises GBDTs to
generate decision tree forests for solving the learning-to-rank task. Every
n iterations round, it employs a selection strategy, Sel Sampl, to select
from the training set D all the positive documents and the p percentage of
the highest-ranked negative examples (the most informative ones) to create
a higher qualitative training set D∗. Then, the training proceeds from a
smaller but more informative subset of the training set.

• Contribution: The main contribution of this work lies in the definition of
a new documents selection function, High Low Sampl, for SelGB frame-
work. High Low Sampl enriches the selection made by Sel Sampl by
selecting not only the p1 percentage of the highest-ranked negative docu-
ments but also the p2 percentage of the lowest-ranked negative documents
to achieve a higher qualitative dataset and without overfitting to difficult
documents.

• Main Results: Through extensive experiments, we empirically proved that
SelGB combined with the new selection strategy High Low Sampl has a
statistically significant increase in performance, in terms of NDCG, compared
to the state-of-the-art SelGBS (i.e., the previous version of SelGB com-
bined with Sel Sampl) and the baseline LambdaMART. Moreover, SelGB
equipped with High Low Sampl achieves a speed-up in the training pro-
cess compared to LambdaMART without compromising model effectiveness.

• In-Depth Analysis: Finally, we provided an in-depth analysis to under-
score the impact of the lowest-ranked negative documents on model predic-
tions. The analysis proved that the presence of the lowest-ranked negative
documents is fundamental to improving stability and effectiveness. In fact,
the ranking produced by the model trained considering the lowest-ranked
negative documents is shown to be more stable and with lower variance. So
we concluded that High Low Sampl can make the most from the training
set by retrieving useful information that enriches the learning process and
brings models with higher stability and less variance.

92 CHAPTER 5. ON THE EFFECT OF LOW-RANKED DOCUMENTS

5.7.1 Future Work

In this Chapter, we proposed High Low Sampl, a novel document selection
strategy tailored for the SelGB framework, significantly enhancing the effective-
ness of learning to rank models. Building upon this research, there are several
promising directions for future work:

• Dynamic Hyperparameters Tuning: Exploration of adaptive strategies
to dynamically adjust hyperparameters, such as p1 and p2, during the train-
ing process based on the model’s performance or dataset characteristics.
This could improve the quality of each training set created by the document
selection strategy, making them more tailored for the training moment the
learning algorithm faces.

• Generalisation to Deep Learning Models: Extending the application of
High Low Sampl beyond gradient boosting-based models to deep learning
architectures for Learning to Rank. Investigating how High Low Sampl
can be adapted and integrated into neural network-based ranking models
could open new avenues for research.

• Move Focus on Positive Documents: In both Lucchese et al. [115]
and this study, the document selection functions have predominantly fo-
cused on negative documents (i.e., documents with a relevance label equal
to 0). However, positive documents can also potentially diminish the qual-
ity of the training set by diverting the model’s attention from particularly
relevant positive documents. For example, in positively unbalanced datasets
where the number of positive documents is very high, a small size of the
top relevant ranking positions (i.e., the ones most viewed by the users) may
generate competition between the positive documents. A prospective avenue
of research involves defining a selection strategy that includes identifying the
most significant positive documents.

• Integration with Online Learning: Investigating the possibility of ap-
plying High Low Sampl into online learning settings where models require
continuous updates. From the results reported in this Chapter, we demon-
strated thatHigh Low Sampl can selectively choose a small subset of high-
quality documents from the available dataset based on the model scores in
a precise training moment. This capability can be leveraged in online LtR
contexts where a reduced quantity of high-quality data is needed to expedite
the online training process.

Chapter 6

LambdaRank Gradients are
Incoherent

In this Chapter, we discuss the work titled “LambdaRank Gradients are Incoher-
ent”, in proceedings as a full paper at the CIKM ’23: The 2023 ACM International
Conference on Information and Knowledge Management. Further details can be
found in the reference [122].

As mentioned in Section 3.2.3.1, a significant limitation in advancing research
on Learning to Rank models’ effectiveness is the non-differentiability of Informa-
tion Retrieval metrics. Typically, IR metrics depend on the sorted list of docu-
ments, rendering an objective function utilising IR metrics not directly optimisable
by gradient descent-based methods due to the non-differentiability or flatness of
these metrics concerning the model parameters [25, 22, 62].

Despite the non-differentiability of IR metrics, numerous LTR algorithms rely
on gradient-based approaches. They either optimise an approximate version of the
ranking metric or construct gradients based on heuristic approximations, such as
LambdaRank [25]. LambdaRank bypasses the need to define an approximate loss
function; instead, it heuristically defines gradients indicating whether a document
score should be increased or decreased to enhance the ranking quality. Initially
designed for artificial neural networks, LambdaRank stood as a state-of-the-art
algorithm in LTR until it was surpassed by LambdaMART [27], an analogous
version based on gradient-boosted decision trees. Given that both LambdaRank
and LambdaMART rely on heuristics, their gradients do not precisely compute
the derivative of an IR metric.

In this work, we show that LambdaRank heuristics (and its derivatives like
LambdaLoss Framework [173], LambdaMART, etc.) have an inherent flaw and
they can generate incoherent gradients. Later in Figure 6.1, we show a few exam-
ples where the most relevant document in the result list does not get the largest
gradient, and therefore, how it is impossible for the learned model to rank it in

93

94 CHAPTER 6. LAMBDARANK GRADIENTS ARE INCOHERENT

the top position. We call gradient incoherency such phenomena where a relevant
document receives a smaller gradient than a less relevant one. We are aware that
gradients are approximate, and, therefore, trade-offs need to be made to opti-
mise non-differentiable functions. However, such incoherency may undermine the
learning process. Moreover, this phenomenon is more prominent with the use of
truncated metrics optimisation, where we would like the model to focus on the top
positions. Due to the gradient incoherency, the gradients are unable to push the
most relevant documents upward.

The contributions of this work are as follows. i) We bring to light the issue
of gradient incoherencies affecting LambdaRank, which has not been previously
shown in the literature. ii) We show how truncated metric optimisation exacer-
bates the phenomenon of gradient incoherencies and undermines the aim of trun-
cation, which is to ensure that the user encounters the most relevant documents
among the first positions. iii) We propose an improvement over the LambdaRank
gradient computation to optimise truncated ranking metrics. Specifically, we pro-
pose Lambda-eX, which extends the set of document pairs considered by Lamb-
daRank when computing gradients.

We validate experimentally our results on five publicly available datasets. We
show how Lambda-eX can reduce the number of queries affected by gradient in-
coherencies introduced by truncated metric optimisation. This reduction is sig-
nificantly large during the early stage of the training, which allows Lambda-eX
to achieve high-quality performance after a few trees. Finally, we show that op-
timising truncated metrics can accelerate training time due to a lower number of
partial derivatives to be computed and that Lambda-eX can achieve statistically
significant improvements while maintaining the same train efficiency as truncated
LambdaRank.

The Chapter is structured as follows. In Section 6.1, we introduce the related
work specific to research aiming to optimise IR metrics. In Section 6.2, we delve
into the details of LambdaRank and its derivatives. Furthermore, we provide a
detailed introduction to the optimisation of truncated metrics and how it is de-
fined within the objective functions of LambdaRank and its derivatives. In Section
6.3, we delve into the core contribution of this work, introducing the concept of
gradient inconsistency and how LambdaRank and its derivatives are affected by
it. Moreover, we explain how these gradient inconsistencies negatively influence
model learning and demonstrate how the truncated metric optimisation exacer-
bates this gradient inconsistency problem. In Section 6.4, we introduce the main
contribution of this work, Lambda-eX, a learning algorithm for reducing gradient
inconsistencies while optimising truncated metrics. Moreover, we demonstrated
that Lambda-eX can achieve statistically significant improvement in effectiveness
without sacrificing the training efficiency brought by the truncated metric opti-

6.1. RELATED WORK: IR METRICS OPTIMISATION 95

misation. Section 6.5 details the experimental setup used to perform experiments
and the learning algorithms utilised to compare our solution. Section 6.6 show-
cases the main results of this work, focusing on both the effectiveness and efficacy
of the proposed solution. Section 6.7 provides in-depth analyses to show how the
proposed strategy effectively reduces the exacerbation of gradient inconsistencies
introduced by truncated metric optimisation and how, even in the early training
iterations, the proposed solution succeeds in training models that are statistically
more effective than the reference baselines. Finally, in Section 6.8, we summarise
the contributions, results, and potential future work of this study.

6.1 Related Work: IR Metrics Optimisation

One of the biggest challenges in Learning to Rank is metrics optimisation. Rank-
ing metrics are non-differentiable since they are inherently tied to the order of
the documents. Therefore, unlike most machine learning techniques, an objective
function that makes use of IR metrics cannot be directly optimised by gradient de-
scent methods. However, effective ranking models are essential in a huge variety of
applications in IR systems. This began an arms race to address the problem from
multiple directions. Among those attempts are ranking metrics approximation or
loss function that indirectly aligns with the desired metric. However, most LTR
approaches optimise a loss function that is loosely related to a ranking metric or
is its upper bound.

A well-known class of solutions that aims to minimise the number of errors
committed in ranking pairs of documents is that of pairwise approaches. These
include RankNet [26], a pairwise approach that optimises a probabilistic loss func-
tion by mapping the model output to a learned probability. Another well-known
approach is AdaRank [182], which learns weak rankers that minimise the pairwise
misranking error and then linearly combines them for prediction. Pairwise ap-
proaches typically optimise a convex upper-bounds of the pair misranking error.
However, this optimisation does not directly imply an improvement in the ranking
metric, thus leading to a mismatch between model optimisation and effectiveness
on the desired IR metric.

To fill the gap, listwise approaches embed the information on the status of the
entire ranking list into the optimisation process. Listwise approaches fall mainly
into two macro-categories, those that approximate the ranking metric through
a smooth surrogate of it, such as SoftRank [161] and ApproxNDCG [142], and
those that use heuristics to construct a smooth surrogate loss function such as
ListNET [37], XENDCG [22], and LambdaRank [25]. ListNET minimises the cross-
entropy between ground truth and the model’s score distribution. XENDCG is
a cross-entropy loss function that guarantees strong theoretical properties like

96 CHAPTER 6. LAMBDARANK GRADIENTS ARE INCOHERENT

optimising a convex bound on mean NDCG. Then, LambdaRank is a learning
algorithm which does not try to optimise a loss function but heuristically defines
the loss gradient. The way LambdaRank defines its gradients is of fundamental
importance to this work; hence, the next section will be entirely devoted to this
aspect.

Worth mentioning is also the study conducted in [62], where the authors in-
vestigated whether training a model on the same truncated metric used for the
evaluation (e.g., NDCG@k) is better than training it on the un-truncated metric
(e.g., NDCG). What emerged is in line with the discovery made with our research:
training on un-truncated metrics returns better-performing models. However, the
reason given by [62] only tells half the story. They claim that optimising truncated
metrics reduces the number of contributions λij each gradient λi receives. They
also showed that the same performance as the un-truncated metric can be achieved
with an equal number of document pairs (of λs) during training. However, in this
work, we show that with the same order of magnitude in the number of pairs as
in the truncated metric optimisation, we can obtain the same performance as the
un-truncated metric optimisation. This confirms that the reason behind the drop
in performance lies in the exacerbation of the gradient incoherencies rather than
in a general lack of pairwise document comparisons. So, selecting the right pairs of
documents makes it possible to obtain the same performance as the un-truncated
metric.

6.2 LambdaRank

Gradient-based learning algorithms, such as artificial neural networks or gradient-
boosted decision trees, run iterative updates to build a ranker that minimises a
given cost function C. For instance, artificial neural networks compute the gradi-
ent direction ∂C/∂wj to update each network weight wj at each batch processed.
Similarly, gradient-boosted decision trees iteratively learn a new tree that approx-
imates ∂C/∂si for each document di in the training set. In both cases, directly
or indirectly, a key step is the computation of ∂C/∂si. Unfortunately, most IR
metrics are rank-based: they depend on documents ranking π rather than si. This
makes the cost function either flat, i.e., modifications of si do not change π and
therefore do not change the cost C, or non-differentiable, i.e., modifications of si
change π causing a non-smooth change of the cost C.

Most approaches drive the learning process by means of a proxy cost function
that is differentiable. One of the most relevant approaches is LambdaRank [25].
LambdaRank’s cost function stems from the RankNet cost [26], which is further
enhanced by considering the impact on the IR metric at hand. The gradient
∂C/∂si is computed on the basis of pairwise lambdas λij. Given a document pair

6.2. LAMBDARANK 97

di and dj such that di is more relevant than dj, i.e., yi > yj, we have that:

λij =
∂C(si − sj)

∂si
=

−σ
1 + eσ(si−sj)

|∆Zij| , (6.1)

where σ = 1, and |∆Zij| is the amount of change in the IR metric Z generated
by swapping the rank positions of di and dj while leaving the rank positions of all
other documents unchanged. The value of λij estimates the change on the cost
function C when the distance between the two scores si and sj is modified. Note
that if two documents have the same relevance label, then λij = 0 due to the fact
that ∆Zij = 0. We recall that λij implements the derivative of the RankNet cost
function multiplied by |∆Zij|. The RankNet cost increases if the two documents
are not in the correct order and converges asymptotically to 0 if the documents
are in the correct order with a large gap in their scores. The |∆Zij| component
boosts the error when this has a significant impact on the specific IR metric.

The gradient of the single document is finally computed as:

λi =
∑

j:(i,j)∈I

λij −
∑

k:(k,i)∈I

λki, (6.2)

where I is the set of ordered pairs (i, j) such that yi > yj, i.e., I = {(i, j) |
di, dj ∈ D ∧ yi > yj}. In regard to the asymptotic complexity of computing λij,
Equation 6.2 requires to evaluate O(n2) document pairs with n being the number
of candidate documents in D for the given query.

According to [25], when maximising an IR metric such as NDCG, the lambdas
are formulated as ∂U/∂si where U is the utility function (metric) being maximised,
rather than a cost to be minimised. Moreover, the sign of the various λij is set so
that the most relevant document di receives a positive gradient update, while dj
receives a negative update and is pushed down through the ranks π.

Before going through the next section, let’s focus on the |∆Zij| in Equation 6.1.
Indeed, Z could be any ranking metric such as NDCG, ERR, etc. In this work, we
focus on NDCG, although the results and conclusions we made also generalise to
other metrics. For this reason, we briefly reintroduce the NDCG metric, previously
introduced in Section 3.2.2.1. NDCG is calculated by the ratio of DCG to IDCG
(i.e., the ideal DCG of the ground truth ranking).

The DCG consists of two components: the gain Gi = 2yi − 1 that document
di, with relevance yi, contributes to the final ranking, and the discounting Di =
log2 (1 + π[i]) that discounts the document’s gain based on its position π[i] in the
list. In fact, a very relevant document in the last position contributes much less
to NDCG than in the first position.

Below, we provide a concise definition of NDCG:

NDCG =
DCG

IDCG
=

1

IDCG

n∑
i=1

Gi

Di

=
1

IDCG

n∑
i=1

2yi − 1

log2(1 + π[i])
,

98 CHAPTER 6. LAMBDARANK GRADIENTS ARE INCOHERENT

Therefore |∆NDCGij| is defined as the difference between the NDCG computed
on the current ranking π and the NDCG computed on the ranking that results
from swapping the two documents at ranks π[i] and π[j]. The |∆NDCGij| can be
efficiently computed as follows:

∆NDCGij = |Gi −Gj|
∣∣∣∣ 1Di

− 1

Dj

∣∣∣∣ (6.3)

By combining Equation 6.1 and 6.3, each λij optimising NDCG can be computed
with the following equation:

λij =
1

1 + e(si−sj)

1

IDCG
|Gi −Gj|

∣∣∣∣ 1Di

− 1

Dj

∣∣∣∣ . (6.4)

Therefore, the gradient λij has three components: the RankNet cost, the gain
difference and the difference of the inverse discount.

6.2.1 Lambda Loss Framework

About a decade later, in [173], the authors introduced LambdaLoss, a probabilistic
framework for optimising ranking metrics. This framework aims to provide theo-
retical justifications for empirically effective learning algorithms like LambdaRank.
Despite LambdaRank’s effectiveness, the underlying loss it optimises for remained
unknown until the introduction of this framework. In [173], it was demonstrated
that LambdaRank is a special configuration with a well-defined loss in the Lamb-
daLoss framework, thus providing theoretical justification for it. Moreover, they
showed that LambdaRank optimises a coarse upper bound of NDCG.

More importantly, this framework allows the definition of metric-driven loss
functions that have clear connections to different ranking metrics. The article
defined various metric-driven loss functions based on NDCG and ARP. Among
those are the metric-driven loss function NDCG-Loss2 and the hybrid loss NDCG-
Loss2++, optimising the NDCG metric and yielding the most statistically signif-
icant results. Furthermore, NDCG-Loss2 has been proved to be an upper bound
of the NDCG metric.

The metric-driven loss function NDCG-Loss2 shares many similarities with
LambdaRank. The main difference lies in the definition of the discount used in
∆NDCGij. Specifically, the discount ρij = |1/Di − 1/Dj| used by LambdaRank
in Equation 6.4 becomes δij = |1/D|i−j| − 1/D|i−j|+1| in the metric-driven loss
function NDCG-Loss2.

Finally, in [173], they also proposed a hybrid loss function named NDCG-
Loss2++, which is a linear combination of the two discountings, ρij +µδij, with µ
being a weight coefficient managing the trade-off between the two. Consequently,

6.2. LAMBDARANK 99

the gradients calculated through the hybrid loss function NDCG-Loss2 are as fol-
lows:

λij =
1

1 + e(si−sj)

1

IDCG
|Gi −Gj| (ρij + µδij). (6.5)

6.2.2 Truncated Metric Optimisation

Real-world applications of information retrieval systems mostly try to optimise
the effectiveness for only the first k results. This manner is strictly related to user
behaviour [62]. When users scan a list of results, they focus more on the first
k (i.e., 5/10) results and do not look at all the thousands of results in the list.
IR metrics naturally provide a truncated version with a cutoff threshold k. For
instance, NDCG@k is computed by considering only the contribution of the top-k
ranked documents. Truncated metrics are the IR metrics of interest to evaluate
the goodness of a ranker in most application scenarios. Therefore, according to the
empirical risk minimisation principle, optimising a truncated metric is expected to
be more effective than its un-truncated variant.

Optimising a truncated metric at training time also brings a straightforward
efficiency improvement. In Equation 6.2, the computation of all λi requires com-
puting the pairwise gradients λij for every pair of documents di, dj ∈ D. Under a
truncated metric, documents ranked beyond k are not considered, and therefore,
a pair of such documents has a value of |∆Zij@k| equal to 0. Thus, the pairs to be
considered are limited to those that contain at least one document in the top-k.
To do so, the gradients λi in Equation 6.2 are computed by replacing the set I
with a Iτ defined as follows:

Iτ = {(i, j) | di, dj ∈ D ∧ yi > yj ∧min(π[i], π[j]) ≤ τ}. (6.6)

From now on, we denote by k the cutoff threshold used by the evaluation metric
and by τ the truncation level [62] optimised during the training. Note that k and
τ do not need to be the same. When τ = k, we are maximising the truncated
metric with cutoff k, while when τ = +∞, we are maximising the un-truncated
metric.

Last but not least, the introduction of τ reduces the asymptotic complexity of
the objective function from O(n2) to O(τn). A significant reduction of the training
time is achieved when τ ≪ n.

Despite being a tiny detail, we remark that we assume the use of Equation 6.1
(and Equation 6.4) without modification even in the presence of a truncation
level, i.e., ∆Zij is used rather than ∆Zij@k, as this is common practice in the
most popular implementations, e.g., LightGBM [93].

100 CHAPTER 6. LAMBDARANK GRADIENTS ARE INCOHERENT

6.3 Contribution 1: Gradient Incoherency

LambdaRank and its variants provide a smooth approximation of commonly used
IR metrics. Yet, we would like this approximation to provide some basic guaran-
tees. We thus introduce a coherency property defined as follows.

Definition 4 (Gradient Coherency). Given two documents di and dj such that
yi > yj and π[i] > π[j], i.e., di is more relevant than dj, but it is ranked at a worse
position, we say that the gradients of the utility function U are coherent at di, dj
if it holds that:

∂U

∂si
≥ ∂U

∂sj
.

The above definition states that if two documents di and dj are misranked,
we would like the computed gradient to be larger at the most relevant document
di. This is because pushing up di more than dj may restore the ideal ordering.
Conversely, when the gradient coherency does not hold, pushing up dj more than di
may only worsen the current ranking. Despite its simplicity, the gradient coherency
property is not easy to satisfy, and, indeed, it is not enjoyed by LambdaRank
gradients.

6.3.1 On Truncated Optimisation

In Figure 6.1(a), we show an example of LambdaRank gradients computation
when maximising NDCG@1 with a truncation level τ = 1. Suppose this is the
ranking after a given number of iterations, epochs, or boosting rounds of a gradient-
based optimisation algorithm. The most relevant document d△ is currently ranked
second, while a less relevant document d⋆ is ranked first. Then, there are three
other non-relevant documents. The arrows depict the computed gradients, and, as
expected, relevant documents get an upward push, while non-relevant documents
get a downward push. However, we have that document d△ gets a smaller gradient
than d⋆, i.e., λ△ < λ⋆, meaning that the most relevant document d△ will not be
able to reach the top position in the next iteration. On the contrary, the gap
between d⋆ and d△ is meant to increase in favour of the least relevant d⋆. This is
a gradient incoherency according to Definition 4.

To clarify this behaviour, in Table 6.1, we report the computation of the doc-
ument gradients λi as a function of the pairwise λij according to Equation 6.4.
Recall that λij is considered if and only if (i, j) ∈ Iτ , i.e., at least one of the two
documents is ranked above the truncation level τ . Let’s focus on the relevant docu-
ments. Document d⋆ receives a negative contribution −λ△⋆ from the most relevant
document d△, and three positive contributions from the non-relevant documents.
Document d△ is below the truncation level, and therefore its gradient is simply

6.3. CONTRIBUTION 1: GRADIENT INCOHERENCY 101

λ△ = +λ△⋆. Therefore, the reason for the gradient incoherency is due to the
contribution of the non-relevant documents that significantly contribute to d⋆ but
not to d△.

The reader may immediately recognise that setting a truncation level τ = +∞
would solve this issue at the cost of a higher computational cost. While this holds
true in this case, as we explained in the next section, it is not always the case that
a truncation level τ = +∞ resolves the issue of gradient incoherencies.

The contribution of this work pursues the following direction: to widen the set
of the λij considered to reduce the exacerbation of gradient incoherencies intro-
duced by a small truncation level while maintaining a computational cost compa-
rable to that of a small truncation level.

Before moving forward, let’s investigate a few similar examples to further un-
derstand the behaviour of LambdaRank. Figure 6.1(b) shows a similar scenario to
that of Figure 6.1(a), with the most relevant document d△ in the last position. As
d△ moves downwards, both the RankNet cost and the discounting component of
∆NDCG△⋆ (i.e., |1/D△ − 1/D⋆|) increase generating a large upward gradient up-
date for d△ and a symmetrical downward update for d⋆. In the setting depicted in
Figure 6.1(b), the gradient λ△ is larger than λ⋆ thus complying with the Gradient
Coherency property.

Table 6.1: Detailed computation of LambdaRank gradients for the example illus-
trated in Figure 6.1(a).

di yi si π[i] λi

d⋆ 1 0.04 0 λ⋆ = −λ△⋆ + λ⋆3 + λ⋆4 + λ⋆5

≈ −0.124 + 0.083 + 0.093 + 0.100 ≈ 0.152
d△ 2 0.03 1 λ△ = +λ△⋆ ≈ 0.124
d3 0 0.02 2 λ3 = −λ⋆3 ≈ −0.083
d4 0 0.01 3 λ4 = −λ⋆4 ≈ −0.093
d5 0 0.00 4 λ5 = −λ⋆5 ≈ −0.100

However, as the rank distance between d⋆ and d△ increases, the value of
|1/D△ − 1/D⋆| increases only marginally. If more non-relevant documents are
placed in between d⋆ and d△ as in Figure 6.1(c), the contributions of such non-
relevant documents provide additional increments to λ⋆ but do not affect λ△.
Eventually, d⋆ gets a larger gradient than d△, breaking the Gradient Coherency
property again. This happens because the discounting factor difference between d⋆
and d△, which should push d△ upwards stronger than d⋆, is too small to overcome
the lack of gradient contribution of the pairs removed by the truncation level.

These three examples make us draw two interesting observations. First, the

102 CHAPTER 6. LAMBDARANK GRADIENTS ARE INCOHERENT

(a)

2

0

0

0

1

1

5

2

3

4

(b)

1

1

(c)

1

1

(d)

2

0

0

0

7

2

3

4

0

0

5

6

2

0

0

0

7

2

3

4

1

0

5

6

r

Rank

Relevance

Gradient
Truncation

level

n

Document

2

0

0

0

1

1

2

3

4

5

0.04

0.03

0.01

0.00

0.02

0.15

0.12

-0.09

-0.10

-0.08

gradient
incoherency

Document
score

Figure 6.1: Examples of gradient incoherency.

more the dataset contains non-relevant documents (i.e., with relevance labels equal
to 0), the more likely the problem will occur. We empirically prove this in Section
6.7.2, especially with the Istella-X dataset. Second, the occurrence of gradient
incoherencies is related to the model’s error in a non-linear way. Suppose the model
ranks document d△ very poorly. In that case, it is impossible for d△ to improve its
ranking (Figure 6.1(c)); if the model error is not large, the model will correctly push

6.3. CONTRIBUTION 1: GRADIENT INCOHERENCY 103

d△ upwards (Figure 6.1(b)), but, if document d△ gets just below the truncation
level, it is pushed downwards again (Figure 6.1(a)). The only way document d△
can escape this problem is by a fortuitous update (e.g., neural network weight
update (LambdaRank) or tree’s leaf value (LambdaMART)), that may generate
a completely different gradient since it is affected by other documents also from
other queries, or by other implicit algorithm-dependent approximations.

A last scenario is illustrated in Figure 6.1(d), where an additional relevant
document is added by replacing document d5 with a document with label y5 = 1.
Being the label the same as d⋆’s, the value of ∆NDCG⋆5 is 0 for λ⋆5, so d5 reduces
the number of gradient contributions to d⋆. However, note that the gradient of
d△ is not affected by d5 because they are both beyond the truncation level. The
new document makes the gradient of document d⋆ smaller than the gradient of
document d△, reversing the gradient computation outcome once more.

These examples show how difficult it is to model the Gradient Coherence an-
alytically. We provided a few examples showing the impact of the label and the
rank difference, which are computed by ∆Zij. Clearly, also the score difference is
relevant and captured by the RankNet component of the gradient in Equation 6.1.
So far, we focused on NDCG only. It is easy to show that the coherence property
does not hold for other discount-based metrics, such as Expected Reciprocal Rank,
Rank-Biased Precision, etc.

6.3.2 On Un-truncated Optimisation

The above discussion suggests that the truncation level τ is the cause of the inco-
herencies in the gradient computation. Indeed, this is not true.

Let’s set τ = +∞, meaning that no truncation is used, and consider the ex-
ample in Table 6.2. We have three documents with scores respectively 0.02, 0.01,
and 0.00, and with relevance labels respectively 4, 0, and 1. Since there is no
truncation level, all the pairwise gradients λij are relevant. Document d1 has a
positive gradient λ1 as it is ranked higher than documents with smaller relevance
labels. This positive push allows gaining a desirable margin from the other docu-
ments. Document d2 is non-relevant and receives a negative gradient contribution
from both the other documents. Unexpectedly, document d3, despite having an
higher label than d2, receives the strongest downward push, i.e., λ3 < λ2 with
y3 > y2. This is a gradient incoherence. The reason is that swapping document
d1 with d3 has a larger impact on the NDCG than swapping d1 with d2, resulting
in λ13 > λ12. LambdaRank prefers avoiding the risk of moving d1 to the third
position rather than pushing d3 up to the second place. Indeed, this comes from
the discount factor of the NDCG metric that demotes documents’ contributions
in the lower ranks. These gradients clearly push the ranking away from the ideal
configuration.

104 CHAPTER 6. LAMBDARANK GRADIENTS ARE INCOHERENT

Table 6.2: Example of computation of LambdaRank gradients with τ = +∞.

di yi si π[i] λi

d1 4 0.02 0 λ1 = λ12 + λ13 ≈ 0.176 + 0.221 ≈ 0.397
d2 0 0.01 1 λ2 = −λ12 − λ32 ≈ −0.176− 0.004 ≈ −0.180
d3 1 0.00 2 λ3 = −λ13 + λ32 ≈ −0.221 + 0.004 ≈ −0.217

This shows that LambdaRank gradients are incoherent independently of the
truncation level. In this case, the major player is the discounting factor. Given
the larger importance of truncated metrics, we leave the analysis of un-truncated
metrics and gradients to future work. In this work, we focus on the cases that
break the Gradient Coherence in the presence of a truncation level, aiming not to
compromise the computational efficiency this provides.

6.4 Contribution 2: Lambda-eX

We put ourselves in the scenario of truncated IR metrics optimisation. From the
above, we can say that the natural choice of using a truncation level at training time
to maximise a truncated metric is very beneficial in terms of computational cost,
but it suffers from incoherence in gradient computation. The main contribution
of this work is Lambda-eX, a new approach to optimise truncated ranking metrics
that limits incoherencies while preserving training time efficiency. Specifically,
we propose heuristic methods to extend the set of document pairs considered by
LambdaRank when computing gradients.

6.4.1 Main Idea

We claim that the gradient incoherencies exacerbate due to missing computations
of certain λij gradients. More specifically, relevant documents that are not ranked
above the truncation level are not evaluated against all the other candidate doc-
uments in D but only against the top-k, and this discards some of the λij and
causes under-estimation of their gradient. One possible approach is to use Iτ=+∞,
i.e., the set containing all the pairs of documents di, dj ∈ D. However, this does
not allow limiting the number of pairwise gradients computed to minimise the
computational cost of the training process.

We thus define a Full-Gradient Document Set X ⊆ D for which we compute a
complete gradient estimation as in the un-truncated case τ = +∞. We compute
λij gradients as in Equation 6.2 but on the basis of the set IX :

IX = {(i, j) | di, dj ∈ D ∧ yi > yj ∧ (di ∈ X ∨ dj ∈ X)} . (6.7)

6.4. CONTRIBUTION 2: LAMBDA-EX 105

2

2

2

1

3

1

2

3

4

5

Ideal ranking

0

3

1

2

1

1

5

2

3

4

static

1

1

random

1

1

all

2

3

1

2

7

2

3

4

0

2

5

6

2

3

1

2

7

2

3

4

0

2

5

6

0

7

1

6

2

7

2

6

NDCG@2
cutoff

top-

true top-

missed top-

false top-

selected
missed top-

Learnt ranking

Document selection strategies

Figure 6.2: Lambda-eX missed top-k selection strategies.

The above means that the gradient λi of a document di ∈ X is computed by
considering the λij (or λji) for every other document dj ∈ D. This provides a
more accurate gradient estimation for the documents in X. We thus remark that

106 CHAPTER 6. LAMBDARANK GRADIENTS ARE INCOHERENT

Lambda-eX does not exploit a fixed truncation level but rather selects the set X
for each query dynamically. Indeed, the set X may not match any set Iτ for any
value of τ . Also, by limiting X such that |X| ≪ |D|, we have |IX | ≪ |Iτ=+∞| and
achieve a more efficient computation than in the un-truncated case.

To understand how the set X is built, let’s first investigate an example from
Figure 6.2. The leftmost example in Figure 6.2 shows a set of documents ranked
according to their relevance labels. If we desire to maximise NDCG@2, the model
must rank the document with a relevance label of 3 in the first position and a
document with a relevance label of 2 in the second position. This represents the
optimal ranking. Suppose a model produces the rightmost ranking depicted in the
same figure; we distinguish documents into three categories. We call true top-k a
relevant document ranked among the top-k and whose label occurs in the top-k of
the ideal ranking. This is the case of the document in the second position of the
ranking. We call false top-k a document ranked among the top-k but whose label
is not among the top-k of the ideal ranking. This is the case of the top-ranked
document with relevance 1. Finally, we call missed top-k a relevant document that
is not ranked in the top-k but whose label is present among the top-k of the ideal
ranking. This is the case of documents with label 2. Note that the above definition
is not based on the document identities but rather on their relevance label.

The previous analysis leads us to state that missed top-k documents receive
an under-estimated gradient, making it impossible for them to climb up to the
top ranks. The proposed Lambda-eX aims at improving the learning process by
providing a complete and more accurate gradient estimation for the missed top-k
documents. To do so, Lambda-eX may include in X the documents ranked in the
top-k positions by the current model and all the missed top-k documents. Since
the number of missed top-k documents can be large, and we want to limit the size
of X to about k, Lambda-eX uses some heuristic criteria to select a subset of the
missed top-k documents to be included in X. Lambda-eX selection strategies are
discussed in the next section.

Note that also Lambda-eX adopts the value ∆Zij with respect to the un-
truncated metric. This means that even for a pair of documents di and dj below
the cutoff, the value of ∆Zij is not 0. Consequently, if (i, j) ∈ IX the partial
derivative λij will contribute to the gradients λi and λj.

6.4.2 Selection Strategies

The way Lambda-eX builds the set X is the core of the algorithm. We let k be
the cutoff of the IR metric being optimised. First, we include in X all the top-k
documents currently ranked by the model. Then, we propose three different ways
to select the missed top-k documents ranked below the metric cutoff to be used to
extend X. For the sake of efficiency, the first two strategies generate a set X of

6.5. EXPERIMENTAL SETUP 107

size |X| ≤ 2k, while the size of X for the third strategy depends on the number
of relevant documents in the query. Note that |X| is query-dependent. The three
selection strategies are defined as follows.

• static: Let h be the number of false top-k documents, the static strategy
includes in X a total of h missed top-k documents having the largest scores.
In Figure 6.2, the example static shows how, among the possible missed
top-k documents (in orange), it selects the best (h = 1) ranked documents
below the cutoff among the missed top-k documents which have label 2. This
strategy focuses on documents closest to the cutoff and thus most likely to
fall into the problem explained in Section 6.3.1.

• random: Analogous to static, but documents are selected randomly instead
of rank-based. In example random, it randomly selects the second missed
top-k of relevance 2. A random selection allows the model to see all missed
top-k documents during training and improves model generalisation.

• all: Analogous to static, but all the missed top-k documents are included
in X even if their number is larger than h. In example all, every document
of relevance label equal to 2 is placed in X. In this case, all missed top-k
documents are compared simultaneously in favour of greater generalisation
of the model at the expense of the efficiency of the gradient computation.

Finally, we also provide two hybrid variants: all-static and all-random.
With efficiency in mind, the goal is to limit the size of X. Depending on the
query, the all may potentially include all the relevant documents, i.e., with a
label greater than 0. To avoid such blow-up of X, the hybrid strategies roll back
to either static or random in this degenerate case, otherwise, they implement the
all strategy.

In terms of the computational complexity of the gradient computation, the
size of X is k + h for the static and random strategies, and since h ≤ k, it holds
that |X| ≤ 2k. Therefore, the asymptotic complexity of Lambda-eX with static

or random in computing all the λi is O(kn), with n the number of documents in
the query. For all, all-static, and all-random, the missed top-k documents
may correspond to the whole subset of relevant documents. Let n+ be the number
of such documents; the computational complexity is O((k + n+)n). Note that in
general, it is expected that n+ ≪ n, meaning a smaller cost than with Iτ=+∞.

6.5 Experimental Setup

The experimental phase aims to verify whether the proposed solution, Lambda-eX,
can counteract the exacerbation of gradient incoherencies introduced during the

108 CHAPTER 6. LAMBDARANK GRADIENTS ARE INCOHERENT

optimisation of truncated metrics and whether this reduction translates into more
effective models. Furthermore, it aims to verify whether the training process with
Lambda-eX maintains the same efficiency in terms of training time as a learning
algorithm that optimises truncated metrics.

We performed extensive evaluation analysis on five publicly available datasets
summarised in Table 6.3. Istella-X has the highest number of documents per
query and non-relevant documents, while Istella-F has the highest number of
queries. MSLR Web30K Fold 1 is the most balanced since half of the docu-
ments are relevant. Instead, Yahoo! Learning to Rank Challenge Set 1
is the smallest one with about 700,000 documents and only an average of 23.73
per query. All datasets have graded relevance labels ranging from 0 to 4, where 0
stands for non-relevant and 4 for highly relevant.

Table 6.3: Datasets properties.

Dataset #queries #doc. query len. %non-rel.

Istella-X 10,000 26,791,447 2,679.14 99.83
Istella-S 33,018 3,408,630 103.24 88.61
Istella-F 33,018 10,454,629 316.63 96.29
Yahoo! Set 1 29,921 709,877 23.73 26.09
MSLR-30K 31,531 3,771,125 119.60 51.47

6.5.1 Baselines and Implementation

It was shown empirically that embedding LambdaRank gradients within Gradient
Boosting Decision Trees is more effective and efficient than using LambdaRank
gradients in a feed-forward artificial neural network [27]. The implementation of
LambdaRank with GBDTs is callded LambdaMART. Therefore, without loss of
generality, we perform all experiments and analyses by means of the more effective
and efficient LambdaMART.

Below, we provide an overview of the implementation details for each of these
algorithms. Note that all algorithms were implemented through the LightGBM
library and are available on GitHub1. Moreover, each model was trained with
gradient normalisation.

Recall that Lambda-eX can be seen as a technique to improve the gradient esti-
mation of already existing learning algorithms such as LambdaMART and the ones
derived from the metric-driven loss function designed in LambdaLoss Framework.
For this reason, we analyse the effectiveness and efficiency improvements brought

1github.com/FedericoMarcuzzi/LambdaRank-Gradients-are-Incoherent

https://github.com/FedericoMarcuzzi/LambdaRank-Gradients-are-Incoherent

6.5. EXPERIMENTAL SETUP 109

by Lambda-eX by comparing a learning algorithm with and without Lambda-eX
set expansion.

Following are the algorithms used in the experimental phase.

• LambdaMART: as a baseline we used the original LambdaMART algorithm
optimising three different values of the truncation level τ .

– LambdaMARTτ=k for which the truncation level τ is set equal to the
metric cutoff k. This exactly optimises the truncated metric used for
the evaluation.

– LambdaMARTτ=k+3 with τ = k + 3 as suggested in [51]. A τ slightly
larger than k provides a better gradient estimation for documents close
to the metric cutoff at a minimal cost without deviating too much from
the evaluation metric.

– LambdaMARTτ=+∞ with τ = +∞ optimises the un-truncated metric,
i.e., the IR metric for the whole ranking.

• LambdaMART-eX: to analyse the impact of Lambda-eX techniques we im-
pelmented it on top of LambdaMART; this union is called LambdaMART-
eX. Moreover, for each selection strategy suggested in Section 6.4.2, we im-
plemented a different version of LambdaMART-eX.

– LambdaMART-eX static makes use of the static selection stretegy.

– LambdaMART-eX random makes use of the random selection stretegy.

– LambdaMART-eX all makes use of the all selection stretegy.

– LambdaMART-eX all-static makes use of the all-static hybrid selec-
tion stretegy.

– LambdaMART-eX sll-random makes use of the all-random hybrid selec-
tion stretegy.

Moreover, as mentioned above, gradient incoherencies also affect LambdaRank
derivatives, such as the metric-driven loss functions designed in LambdaLoss Frame-
work, (e.g., NDCG-Loss1, NDCG-Loss2, and hybrid loss NDCG-Loss2++). To
this end, we also investigate whether extending the set of document pairs is ben-
eficial for these loss functions. We focus the analysis on NDCG-Loss2++, which
is the loss function shown to achieve higher performance among the others in
[173]. For the sake of clarity, hereinafter, we refer to the learning algorithm that
makes use of NDCG-Loss2++ loss function as LambdaLoss. To assess the impact
of Lambda-eX on the LambdaLoss algorithm, we also performed the same experi-
ments designed for LambdaMART with LambdaLoss. We also implemented all the

110 CHAPTER 6. LAMBDARANK GRADIENTS ARE INCOHERENT

algorithms defined above using the LambdaLoss algorithm. So, we compare the
five versions of LambdaLoss-eX (i.e., one for each selection strategy) with the fol-
lowing three baselines: LambdaLossτ=k, LambdaLossτ=k+3, and LambdaLossτ=+∞

6.6 Main Results

The primary results of this work aim to address two questions: can the use of
the Lambda-eX technique yield more effective models than those trained using the
original learning algorithms? Can models trained with Lambda-eX maintain the
training efficiency guaranteed by truncated metric optimisation? For this reason,
we divided the main results into two sections, one on effectiveness and the other
on efficiency.

6.6.1 Effectiveness

We evaluate the models’ effectiveness in terms of NDCG@k for different cutoff
values: 5, 10, and 15. For each model, we stop the training process after 1,000
trees and select the best iteration based on the performance achieved on the val-
idation set. The best hyperparameters used to train each model are reported in
Section 6.7.1 Statistically significant improvements with respect to the baselines
LambdaMARTτ=k+3 and LambdaLossτ=k+3 were computed according to Fisher’s
randomisation test [65] with a two-sided p-value. Statistically significant improve-
ment are marked with italic ∗ for p = 0.05 and bold ∗∗ for p = 0.01.

We choose these as reference baselines since both perform mostly better than
models trained with τ = k and slightly worse than τ = +∞ but with a much lower
training cost of the latter. Results are summarised in Table 6.4 for LambdaMART-
based algorithms and in Table 6.5 for LambdaLoss-based algorithms. In the fol-
lowing sub-section, we evaluate the computational cost of the discussed methods.

First of all, we highlight that the observations drawn from the results are mostly
the same for both LambdaMART and LambdaLoss.

Interestingly, models trained with τ = +∞ achieve the best NDCG@k values
across datasets, especially datasets from the Istella family. The only perfor-
mance drops occur with LambdaLoss learning algorithm on MSLR-30K and Ya-
hoo! Set 1. In these cases, the performance of LambdaLoss is clearly worse than
that of LambdaMART. The NDCG scores obtained with τ = +∞ might seem
surprising as the target metric is not optimised; however, this highlights the effect
of the gradient incoherencies intruded by τ = k and τ = k + 3.

These results are interesting as they demonstrate how gradient incoherencies
conflict with the empirical risk minimisation principle, which suggests that opti-
mising the evaluation metric should lead to higher effectiveness. In the presence

6.6. MAIN RESULTS 111

Table 6.4: Effectiveness in terms of NDCG (percentage). Statistically significant
improvements w.r.t. τ = k+3 according to Fisher’s randomisation test [65] (with
a two-sided p-value) are marked with italic ∗ (p = 0.05) and bold ∗∗ (p = 0.01).

LambdaMART LambdaMART-eX
Dataset τ=k τ=k+3 τ=+∞ static random all all-stt all-rnd

NDCG@5

Ist-X 73.32 74.11 75.35 ∗∗ 75.19 ∗∗ 75.17 ∗∗ 75.15 ∗∗ 75.19 ∗∗ 75.17 ∗∗

Ist-S 70.19 70.42 70.64 ∗ 70.67 ∗∗ 70.71 ∗∗ 70.55 70.65 ∗ 70.64 ∗

Ist-F 67.02 67.24 67.62 ∗∗ 67.55 ∗∗ 67.67 ∗∗ 67.50 ∗∗ 67.68 ∗∗ 67.71 ∗∗

Yah 1 75.35 75.59 75.85 ∗∗ 75.67 75.59 75.63 75.73 75.67
MS 30 50.66 51.15 51.22 50.95 50.96 51.24 51.42 ∗ 51.38

NDCG@10

Ist-X 77.53 78.55 78.61 78.61 78.61 78.61 78.61 78.61
Ist-S 76.35 76.48 76.71 ∗∗ 76.66 ∗∗ 76.70 ∗∗ 76.69 ∗∗ 76.72 ∗∗ 76.70 ∗∗

Ist-F 71.85 72.07 72.39 ∗∗ 72.42 ∗∗ 72.46 ∗∗ 72.42 ∗∗ 72.35 ∗∗ 72.46 ∗∗

Yah 1 79.62 79.78 79.84 79.66 79.75 79.78 79.81 79.80
MS 30 52.66 53.02 52.98 52.96 53.08 53.23 ∗ 53.19 53.14

NDCG@15

Ist-X 79.00 79.29 79.45 79.44 79.48 79.44 79.44 79.48
Ist-S 80.63 80.59 80.73 ∗ 80.69 80.71 ∗ 80.75 ∗∗ 80.80 ∗∗ 80.73 ∗

Ist-F 75.46 75.56 75.87 ∗∗ 75.94 ∗∗ 75.90 ∗∗ 75.92 ∗∗ 76.00 ∗∗ 76.00 ∗∗

Yah 1 82.01 81.96 82.03 81.94 82.07 82.04 82.07 82.04
MS 30 54.60 54.72 54.67 54.82 54.93 ∗∗ 54.84 54.75 54.83

of gradient incoherencies, considering all document pairs provides a more accurate
gradient estimation rather than focusing solely on those maximising the truncated
metric. However, as demonstrated in the next section, this comes at a non-trivial
computational cost.

Models trained with Lambda-eX provide very interesting results. The scored
NDCG@k values are most of the times statistically significantly better than those
of the baselines with τ = k and τ = k + 3, and never statistically worse. Further-
more, they often achieve the same performance as τ = +∞.

Overall, the different Lambda-eX variants implemented for each selection strat-
egy achieve similar performance. The random variant seems to achieve statistical
improvements in most of the experiments, while all and all-static in a few
specific cases. However, the random strategy is preferable due to its lower compu-
tational complexity.

From the results in Tables 6.4 and 6.5, two interesting considerations can be
drawn about our strategy. Lambda-eX is most effective in datasets like the Is-

112 CHAPTER 6. LAMBDARANK GRADIENTS ARE INCOHERENT

Table 6.5: Effectiveness in terms of NDCG (percentage). Statistically significant
improvements w.r.t. τ = k+3 according to Fisher’s randomisation test [65] (with
a two-sided p-value) are marked with italic ∗ (p = 0.05) and bold ∗∗ (p = 0.01).

LambdaLoss LambdaLoss-eX
Dataset τ=k τ=k+3 τ=+∞ static random all all-stt all-rnd

NDCG@5

Ist-X 74.08 74.22 75.40 ∗∗ 75.33 ∗∗ 75.19 ∗∗ 75.14 ∗∗ 75.33 ∗∗ 75.19 ∗∗

Ist-S 69.97 70.50 71.11 ∗∗ 70.92 ∗∗ 70.92 ∗∗ 70.97 ∗∗ 70.95 ∗∗ 71.02 ∗∗

Ist-F 66.97 67.56 68.18 ∗∗ 68.08 ∗∗ 68.26 ∗∗ 68.24 ∗∗ 68.07 ∗∗ 68.18 ∗∗

Yah 1 75.44 75.69 74.96 75.74 75.81 75.84 75.74 75.86
MS 30 50.77 51.04 49.19 50.99 50.92 51.05 51.10 51.08

NDCG@10

Ist-X 77.91 78.35 78.74 78.94 ∗∗ 78.77 ∗ 78.94 ∗∗ 78.94 ∗∗ 78.77 ∗

Ist-S 76.63 76.89 77.37 ∗∗ 77.26 ∗∗ 77.43 ∗∗ 77.23 ∗∗ 77.44 ∗∗ 77.28 ∗∗

Ist-F 72.18 72.53 73.17 ∗∗ 73.21 ∗∗ 73.20 ∗∗ 73.16 ∗∗ 73.12 ∗∗ 73.15 ∗∗

Yah 1 79.63 79.68 79.19 79.94 ∗∗ 79.94 ∗∗ 79.98 ∗∗ 79.93 ∗∗ 79.89 ∗

MS 30 52.89 53.08 51.36 52.99 52.98 52.95 53.02 52.99

NDCG@15

Ist-X 78.81 79.06 79.73 ∗∗ 79.60 ∗ 79.78 ∗∗ 79.60 ∗ 79.60 ∗ 79.78 ∗∗

Ist-S 80.96 81.15 81.29 81.31 ∗ 81.40 ∗∗ 81.38 ∗∗ 81.38 ∗∗ 81.38 ∗∗

Ist-F 75.97 76.24 76.74 ∗∗ 76.85 ∗∗ 76.85 ∗∗ 76.83 ∗∗ 76.82 ∗∗ 76.85 ∗∗

Yah 1 81.88 81.95 81.50 82.15 ∗ 82.16 ∗∗ 82.09 82.09 82.09
MS 30 54.68 54.60 53.23 54.63 54.65 54.64 54.69 54.62

tellas which contain many non-relevant documents. As mentioned above, many
non-relevant documents increase the chance of incoherencies, which are success-
fully managed by Lambda-eX. We can conclude that Lambda-eX finds its best
application in datasets with many non-relevant documents. This is particularly
appealing in realistic scenarios where there are far fewer documents relevant to a
query than non-relevant ones.

The second interesting consideration is that as the metric cutoff k increases,
the performance gap between Lambda-eX and the baselines decreases. The reason
behind it is straightforward. Recall that in the experiments, we fixed τ equal to
the cutoff k and to the slightly larger value k + 3. Thus, with a small cutoff, the
probability of a relevant document being ranked below the truncation level is high;
consequently, many of its λij are discarded. As the cutoff increases, relevant docu-
ments are more likely to be ranked above a larger truncation level, and therefore,
their gradient is fully computed.

6.6. MAIN RESULTS 113

Table 6.6: Efficiency in terms of training time (milliseconds). For truncated-
optimisation k = 5, i.e., evaluation metric NDCG@5.

LambdaMART LambdaMART-eX
Dataset τ=k τ=k+3 τ=+∞ stt rnd all all-stt all-rnd

training time per objective function
Ist-X 89 100 2574 115 132 118 113 130
Ist-S 12 16 31 17 20 18 18 22
Ist-F 30 38 119 43 49 46 45 52
Yah 1 3 4 12 4 6 6 6 7
MS 30 4 5 34 5 7 9 8 10

training time per tree
Ist-X 672 751 3253 792 815 795 796 813
Ist-S 156 122 143 129 129 130 130 133
Ist-F 263 288 380 306 308 301 299 307
Yah 1 207 205 215 208 294 287 209 212
MS 30 291 298 388 324 317 326 314 334

6.6.2 Efficiency

In the previous section, we showed how Lambda-eX is able to achieve statistically
significant improvement in terms of NDCG both on LambdaMART and Lamb-
daLoss when optimising truncated metrics. However, to be a valid alternative to
the algorithms optimising the un-truncated metrics, shown to be the most effective,
it needs to be more efficient.

To do so, we measure the average training time spent by the LightGBM li-
brary in training a tree and in executing the objective function (i.e., computing
the gradient for each document for each query) while training a single tree. We
run this analysis with fixed k = 5 (i.e., evaluation metric NDCG@5), affecting
the training efficiency of LambdaMARTτ=k, LambdaMARTτ=k+3 and the three
LambdaMART-eX variants. Results are reported in Table 6.6.

Note that since the difference between LambdaMART and LambdaLoss relies
only on the discounting factor in the ∆NDCGij, the computational cost of the two
algorithms is the same. For this reason, we performed the efficiency analysis only
on LambdaMART, but the results generalise also for LambdaLoss.

The average execution time of an iteration of LambdaMART-eX’s objective
function aligns with the one of LambdaMARTτ=k and LambdaMARTτ=k+3. The
reason behind this relies on a similar asymptotic complexity. As expected, Lamb-
daMARTτ=+∞ is the one that spends more time executing the objective func-
tion since it has to process O(n2) document pairs. Note that the cost of Lamb-

114 CHAPTER 6. LAMBDARANK GRADIENTS ARE INCOHERENT

daMARTτ=+∞ can be up to 30 times larger than the other competitors.
The difference in execution time of the objective functions only affects the

training of a tree with long results lists. This can be seen with Istella-X which
tree learning time increases from 792 milliseconds with LambdaMART-eX static to
3,253 milliseconds with LambdaMARTτ=+∞. This is a 4× slowdown that happens
for each of the 1,000 trees of the model trained.

200 300 400 500 600 700 800 900 1000

#trees

70.5

71.0

71.5

72.0

72.5

73.0

73.5

74.0

74.5

N
D

C
G

@
5

(%
)

LambdaMART τ=k

LambdaMART τ=k+3

LambdaMART τ=+∞
LambdaMART-eX random

Figure 6.3: Models performance on Istella-X validation set.

Another interesting observation in favour of LambdaMART-eX’s efficiency
is that it manages to achieve the same performance as LambdaMARTτ=k and
LambdaMARTτ=k+3 with far fewer trees. In Figure 6.3, the model trained with
LambdaMART-eX random achieves the same performance as LambdaMARTτ=k with
about 250 trees in Istella-X, and the same performance as LambdaMARTτ=k+3

with 300 trees. The difference in model size significantly reduces training time,
even though the average time taken to train a single tree is similar. The same be-
haviour was observed for all the Lambda-eX variants. Furthermore, an interesting
side effect of a smaller ensemble size translates into an increase in efficiency also
at the operational phase, where an instance has to traverse a few trees.

In conclusion, LambdaMART-eX can reduce the training time compared to
LambdaMARTτ=k and LambdaMARTτ=k+3 by training equally effective models
with far fewer trees, and compared to LambdaMARTτ=+∞ especially when train-
ing datasets with a high average number of documents per query. This result
generalises to other learning algorithms such as LambdaLoss.

6.7. IN-DEPTH ANALYSIS 115

6.7 In-Depth Analysis

In the previous section, we demonstrated that Lambda-eX allows training effective
and efficient models. The capability of Lambda-eX to learn more effective models
compared to a learning algorithm that optimises truncated metrics is attributed
to the reduction in the number of gradient incoherencies. However, does Lambda-
eX effectively reduce these incoherencies? To answer this question, we conducted
an in-depth analysis of the number of gradient incoherencies affecting the learn-
ing algorithms. However, before delving into the analysis, let’s briefly describe
the hyperparameters used to obtain the models whose results are reported in the
previous tables.

6.7.1 Hyperparameter Analysis

In Table 6.7 are summarised the hyperparameters used for both LambdaMART
and LambdaLoss learning algorithms. The best hyperparameters were found
through hyperparameter tuning on the validation set. Furthermore, for each
dataset, the maximum value of max bin is set to 255. The weight coefficient
µ used in the hybrid loss function NDCG-Loss2++ is set to 5, while for models
trained with Lambda-eX on MSLR-30K and Yahoo! Set 1, the best value is
0.5. Recall that the hyperparameter µ manages the trade-off between the discount
ρij of LambdaMART and δij of NDCG-Loss2, i.e., ρij + µδij.

Table 6.7: Hyperparameters per dataset.

Dataset learning rate num leaves min data min hessian

Istella-X/S/F 0.05 64 20 0.001
Yahoo! Set 1 0.02 200 100 0
MSLR-30K 0.02 400 50 0

6.7.2 Incoherency Reduction

Another important question we wanted to answer in this work is: Does Lambda-
eX reduce the number of gradient incoherencies? To answer this question, we
analyse the number of queries affected by gradient incoherencies during the training
process. We performed this analysis for LambdaMART-based models (LM). In
Figure 6.4, we report, for each tree of the trained forest, the number of queries
encompassing at least one violation of Definition 4 when optimising NDCG@k
with k = 5. We restrict our attention to the most harmful violations where a false
top-k document di gets a larger gradient than a missed top-k document dj ranked

116 CHAPTER 6. LAMBDARANK GRADIENTS ARE INCOHERENT

100 101 102 103

#trees

0.0

10.0

8.0

6.0

4.0

2.0

10.0

%
qu

er
ie

s
LM τ=k

LM τ=k+3

LM τ=+∞
LM-eX stt

LM-eX rnd

LM-eX all

LM-eX all-stt

LM-eX all-rnd

(a) Istella-X

100 101 102 103

#trees

0.0

0.9

0.7

0.5

0.4

0.2

0.9

(b) MSLR-30K

Figure 6.4: percentage of queries (y-axis) affected by at least one gradient inco-
herence during each tree learning (x-axis). The scale in the x-axis is logarithmic.

below k. We report the results of this analysis for both Istella-X (Figure 6.4a)
and MSLR-30K (Figure 6.4b).

Results show that using a truncation level τ = k generates the largest amount
of incoherencies in the early stage of the training process, involving about 10%
of the queries of Istella-X after 10 trees and 4% after 100 trees. However, the
number of incoherencies falls down significantly towards the end of the forest. The
initial trees of the forest are strongly affected by gradient incoherencies, which are
mostly solved afterwards. Similar behaviour is exhibited by LambdaMARTτ=k+3,
with fewer incoherencies overall. For Istella-X, this behaviour was expected
since 99.83% of its documents have relevance labels equal to 0, and, as explained
in Section 6.3.1, this increases the chance of incoherencies.

The best behaviour is obtained by LambdaMARTτ=+∞ with the number of
queries affected by gradient incoherencies that quickly fall to about 2% after 10
trees. A similar trend is for MSLR-30K dataset. This confirms that discarding
some of the λij values generates a large number of incoherencies, both in Lamb-
daMARTτ=k and LambdaMARTτ=k+3.

Interestingly enough, all the five variants of LambdaMART-eX have the same
behaviour of LambdaMARTτ=+∞. This confirms that the proposed Lambda-eX
succeeds in limiting the number of incoherencies, as with LambdaMARTτ=+∞
where all the λij are considered, but without performing all the pairwise compar-
ison of documents.

A final interesting consideration can be made by observing again Figure 6.3
where the effect of having fewer incoherencies at the beginning of the training phase
translates into more effective models already in the first trees of the ensemble.

6.7. IN-DEPTH ANALYSIS 117

The first 300 trees of LambdaMART-eX random perform as well as 1,000 trees of
LambdaMARTτ=k+3.

118 CHAPTER 6. LAMBDARANK GRADIENTS ARE INCOHERENT

6.8 Summary

In this section, we provide a comprehensive overview of the main results and con-
tributions of the study introduced in this Chapter titled “LambdaRank Gradients
are Incoherent”.

• Gradient Incoherencies: In this work, we discovered a notable issue
concerning LambdaRank and its derivatives (e.g., LambdaLoss and Lamb-
daMART); they are affected by gradient incoherencies. A gradient inco-
herency occurs when a document with higher relevance in the ground truth
receives a smaller gradient push than a document with lower relevance.
These gradient inconsistencies prevent the learning algorithm from effectively
learning the optimal rankings for training queries. Moreover, we discovered
that these incoherencies become more pronounced when optimising trun-
cated metrics. As a result, the efficiency gains brought by truncated metric
optimisation come at the expense of a reduction in model effectiveness.

• Contribution: In this work, we provided Lambda-eX, a technique to opti-
mise the truncated metric while maintaining the training efficiency of trun-
cated metric optimisation and the effectiveness of un-truncated optimisation.
Lambda-eX succeeds in both aims by expanding the set of documents for
which to compute a complete gradient estimation. Moreover, we provided
five versions of Lambda-eX, each with a different paradigm in the document
selection.

• Main Results: Through extensive experiments, we showed that Lambda-
eX allows LambdaRank-based learning algorithms such as LambdaMART
and LambdaLoss to achieve statistically significant improvement in terms of
NDCG@k with respect to models trained to directly optimise the target met-
ric while maintaining the same efficiency in terms of training time. Finally,
when Lambda-eX is used to train models on datasets with a high average
number of documents per query, it is able to achieve the same performance
as the un-truncated optimisation while significantly reducing the training
time, e.g., about 40 minutes difference in Istella-X.

• In-Depth Analysis: Through specific analysis, we have demonstrated that
the use of Lambda-eX effectively mitigates the exacerbation of gradient in-
coherencies introduced by truncated optimisation, resulting in a number of
incoherencies comparable to that achieved with non-truncated optimisations.

6.8. SUMMARY 119

6.8.1 Future Work

In this final section, we present potential avenues for future research and extensions
based on the results obtained in this study.

• Eliminate All Gradient Incoherencies: In this Chapter, we introduced
Lambda-eX, a novel technique aimed at mitigating the exacerbation of gradi-
ent incoherency resulting from truncated metric optimisation while preserv-
ing training efficiency. However, the phenomenon of gradient incoherency is
only attenuated and not entirely eliminated. So, the research problem left
unsolved in this work is how to extinguish gradient incoherencies definitively.
A possible path to reach this goal is to explore and provide more sophisti-
cated heuristics to select the most effective sets of documents, aiming to
eliminate incoherencies while preserving computational efficiency. Alterna-
tively, defining a new ∆Zij to allow any LambdaRank-based algorithm to
optimise the evaluation metric without generating incoherencies.

• Other Learning Algorithms: Additional pursuits of this research concern
discovering the presence of gradient incoherencies in other learning algo-
rithms not based on LambdaRank. Understanding how these incoherencies
manifest and influence the learning phase of such algorithms is another crit-
ical goal. Additionally, it would be interesting to elucidate how Lambda-eX,
despite its design for LambdaRank-based learning algorithms, can be an ef-
fective technique also for these algorithms, potentially alleviating the impact
of gradient incoherencies and thus improving their overall performance.

• Theoretical Formalisation: The solution proposed in this work aims to
resolve gradient incoherencies through a heuristic; moreover, the gradient
incoherency phenomenon lacks a theoretical formalisation explaining exactly
why they occur. A deeper theoretical analysis of gradient incoherencies and
their impact on the learning process could provide valuable insights. Formal
models and theoretical frameworks could be developed to understand better
the conditions under which gradient incoherencies occur and how they affect
the learning process.

• Integration with Online Learning: Lambda-eX’s ability to be efficient
during training time can be beneficial in an online learning scenario. Fur-
thermore, as shown in Section 6.6.2 in Figure 6.3, the ability of Lambda-eX
to reduce the number of gradient incoherencies allows it to learn very effec-
tive models already at the beginning of the training process, providing an
even more appealing tool for online learning, where robust and fast training
are crucial.

120 CHAPTER 6. LAMBDARANK GRADIENTS ARE INCOHERENT

Chapter 7

Discussion First Part

Part I encompasses the research works in the domain of learning to rank achieved
during my doctoral studies. This chapter summarises our main effort in designing
data-aware learning algorithms to create more effective and efficient models and
outlines interesting observations and future work directions.

In Chapter 4, we provided the definition of consistent outliers [121], which
refers to documents consistently misranked by the model during the training pro-
cess. We designed SOUR [121], a learning algorithm that detects and removes
consistent outliers within the training set. Through this work, we found that re-
moving these consistent outliers from the training set allows us to learn rankers
with a statistically significant improvement in effectiveness compared to models
trained on the entire training set without affecting the training efficiency.

In Chapter 5, we provided High Low Sampl [110], a novel document selec-
tion strategy for Selective Gradient Boosting framework. This strategy efficiently
selects relevant and non-relevant documents that contribute the most to the learn-
ing process while eliminating superfluous or detrimental documents that could
negatively impact learning quality. Our selection strategy addresses the limita-
tions of the original Sel Sampl selection strategy presented alongside the Selec-
tive Gradient Boosting framework. Specifically, High Low Sampl includes the
lowest-ranked non-relevant documents in the training set, which were previously
excluded by Sel Sampl. Including the lowest-ranked non-relevant documents
enhances training stability and reduces variance in document ranking positions
during training, resulting in more effective rankers.

Furthermore, in Chapter 6, we discovered that algorithms based on the well-
known LambdaRank learning algorithm are affected by what we refer to as gradient
incoherencies. A gradient incoherency occurs when a misranked document receives
an upward/downward push smaller than those with lower/higher relevance labels.
The push the documents receive is the gradient force of the optimised loss function.
Consequently, these incoherencies prevent the learning algorithm from learning the

121

122 CHAPTER 7. DISCUSSION FIRST PART

optimal ranking. Moreover, we discovered that optimising truncated metrics to
align with empirical risk minimisation and improve model efficiency exacerbates
the problem of gradient incoherencies, resulting in less effective models than those
optimising the entire metric. To address this exacerbation phenomenon, we in-
troduced Lambda-eX, which eliminates the exacerbation of gradient incoherencies
introduced by truncated metric optimisation while preserving its advantages.

As anticipated in the introductory section of this thesis, the contribution we
aimed to bring to the LtR domain lies in algorithms that are more aware of the in-
put data used for learning. To this aim, the algorithms presented in Chapter 4 (i.e.,
SOUR) and Chapter 5 (i.e., High Low Sampl), it is clear how these algorithms
achieve this goal. The former removes harmful documents (i.e., consistent out-
liers) from the training set; instead, the latter selectively chooses the most useful
documents from the training set (i.e., positive documents, highest-ranked non-
relevant documents, and lowest-ranked non-relevant documents). Both algorithms
actively influence the learning process by modifying the training set, creating a
higher-quality training set.

The work presented in Chapter 6 focuses on Gradient Incoherencies [122] and
seems to deviate from the objective of this thesis, i.e., to make learning algorithms
more data-aware regarding the input data. In fact, Lambda-eX [122] does not
modify the training set and performs the training on the untouched input set. De-
spite that, Lambda-eX is a data-aware algorithm. The Lambda-eX data awareness
regarding the training set shifts more toward a concept of greater efficiency than
greater effectiveness. Experimental results demonstrated that achieving effective
models does not necessarily require comparing every document within a query to
all others; instead, only a small subset of documents requires a complete compar-
ison. Lambda-eX aims to create a subset of documents within the training set
for complete comparison to allow the learning algorithm to produce models that
are as effective as those that perform complete comparison for each document but
with a more efficient training phase. Thus, conscious interaction with the train-
ing data leads to an advantage in the LtR domain by producing models of equal
effectiveness but with better efficiency in training time. Finally, we showed how
Lambda-eX allows training models to be equally effective as those trained with
truncated optimisations but with a considerable reduction in forest size (see Figure
6.3), resulting in an improvement in model efficiency in the operational phase.
We want to conclude this Chapter with an important consideration and a global
analysis of the work we did in the field of LtR. The research discoveries we made
in this first part of the thesis are presented chronologically. An idea we matured
through the last published work, that of Chapter 6 (i.e., gradient incoherencies
and Lambda-eX), could be the primary avenue for future research starting from
this thesis.

123

The research question we pose is the following: Does the increase in effec-
tiveness observed in rankers trained with learning algorithms employing selection,
sampling, or training set cleaning strategies (such as Selective Gradient Boosting,
SOUR, etc.) result from an incidental reduction in gradient incoherencies caused
by the removal of problematic documents?

This question, for which we have not yet provided an answer, stands as a
significant area for future work based on this thesis, and it is raised from the
following two considerations:

First, when SOUR is used to remove consistent outliers, removing those mis-
ranked documents might equate to removing those documents that, due to gradient
incoherencies, never achieve the correct ranking. Indeed, in Section 6.3.1 and in
Figure 6.1, we already proved that removing, altering, or introducing documents
might introduce or eliminate gradient incoherencies. For example, the consistent
positive outliers in Figure 4.1 that can be seen as the document d△ in Figure 6.1(a),
misranked by the optimisation process due to the contribution that a less relevant
document receives from the documents with relevance label equal to 0. Removing
it from the training set may lead to a more coherent optimisation process.

Second, we can make an even stronger argument in the context of selection
strategies like Sel Sampl andHigh Low Sampl, where removing some negative
documents from the training set can significantly improve effectiveness. Let’s draw
a parallel between Lambda-eX and High Low Sampl applied on the Istella-X
dataset, which contains 99.83% of documents with relevance 0. In Chapter 6, we
demonstrated how the presence of many non-relevant documents in the training
set significantly increases the occurrence of gradient incoherencies. In the same
Chapter, we showed that removing these incoherencies in such datasets leads to
the highest effectiveness improvement. At the same time, we showed in Chapter 5
how the sole selection of 1% of non-relevant documents by Sel Sampl from the
training set of Istella-X produces the highest increase in effectiveness among all
the datasets and learning algorithms used in those experiments. We can conclude
that selecting only 1% of the non-relevant documents, i.e., discarding (removing)
99% of documents with relevance 0, is exactly like removing the contributions
received by document d⋆ from the non-relevant document below k, that create
gradient incoherencies and prevent document d△ from reaching the top position.
So, document selection strategies like Sel Sampl and High Low Sampl might
reduce the likelihood of gradient incoherency occurrence.

Finally, note that not only the removal of documents but also the addition or
modification of some documents and their relevance labels allows the removal of
incoherencies. Therefore, similar considerations can be made to data augmentation
or undersampling strategies.

124 CHAPTER 7. DISCUSSION FIRST PART

Part II

Robust Learning Algorithms for
Classification

125

Chapter 8

Background and State of the Art

This Chapter provides an overview of the background and the state of the art
in the context of Robust Learning Algorithms for classification. It primarily fo-
cuses on Adversarial Machine Learning (AML), especially for learning algorithms
based on decision trees or forests applied to classification tasks. The Chapter in-
troduces the concepts of Attack, Attacker, and the type of attacks. Specifically, it
focuses on the type of attacks known as evasion attacks. The Chapter provides the
most common performance metrics for evaluating machine learning models in an
adversarial scenario. Then, it explores state-of-the-art strategies to enhance the
model’s robustness against evasion attacks and verify or certify the robustness of
machine learning models. Furthermore, the Chapter presents the datasets used in
the experimental phase related to this part of the thesis.

8.1 Adversarial Machine Learning

Adversarial Machine Learning (AML) is a dynamic and evolving field that resides
at the intersection of machine learning and cybersecurity. It explores the vulnera-
bilities of machine learning models and their susceptibility to adversarial attacks.
In essence, AML investigates the ways in which malicious actors can manipulate
or deceive machine learning systems, with potentially far-reaching consequences.

The first reference to Adversarial Machine Learning dates back to 2004, in the
work by Dalvi et al. [54]. Nowadays, it is a crucial point to consider during the
development of Artificial Intelligence systems. As machine learning algorithms
increasingly find applications in critical domains such as finance, healthcare, and
autonomous vehicles, the need for robust and secure models has never been more
pressing. AML seeks to address the inherent weaknesses of these algorithms when
confronted with adversarial inputs and to develop strategies that can safeguard
against these threats.

127

128 CHAPTER 8. BACKGROUND AND STATE OF THE ART

Adversarial attacks can take various forms, but one common category is eva-
sion attacks, where adversaries intentionally manipulate input data to mislead
machine learning models into making incorrect predictions or classifications. The
consequences of such attacks can be severe, impacting everything from spam filters
to image recognition systems and autonomous vehicles.

To mitigate these risks, AML researchers delve into understanding adversarial
attack strategies to develop robust machine learning models and devise methods
to certify their security and robustness. The continuous struggle between those
exploiting vulnerabilities and those strengthening machine learning systems makes
adversarial machine learning an engaging and crucial field of study with significant
implications for the future of AI and cybersecurity.

8.1.1 Attack Taxonomy

To better understand how AML poses a risk to machine learning models, it is
essential to provide a taxonomy of attacks that can be perpetrated within the
machine learning context. The literature offers a taxonomy of attacks on systems
utilising machine learning based on three fundamental features: the influence that
the attack has on the system, the type of security violation caused by the attack,
and the specificity of the attack [85, 12, 14, 6].

The feature influence is divided into two types of attack: causative and ex-
ploratory.

• causative: A causative attack is an adversarial attack where the adver-
sary interferes with the learning phase by altering the training data used to
train a machine learning model. A causative attack aims to manipulate the
model’s behaviour by injecting malicious or perturbed data into the training
set. This can decrease the model’s effectiveness, making it more susceptible
to misclassification or other security breaches. Causative attacks focus on
influencing the model’s training process.

• exploratory: An exploratory attack is an adversarial attack where the ad-
versary does not alter the training data but instead attempts to gain insights
or extract information from an already trained machine learning model. The
attacker seeks to understand the model’s vulnerabilities, decision bound-
aries, or internal parameters without modifying the learning algorithm or
the training data. This information can then be used to craft adversarial
examples or inputs that deceive the model without changing the model it-
self. Exploratory attacks focus on understanding and exploiting the existing
model’s weaknesses.

8.1. ADVERSARIAL MACHINE LEARNING 129

The feature security violation is divided into three types of violation: in-
tegrity, availability and privacy violation.

• integrity violation: Integrity violation refers to a type of security breach
where an attacker attempts to deceive the machine learning model into an
incorrect classification of adversarial instances as legitimate or benign. In
other words, the attacker’s goal is to compromise the integrity of the model’s
predictions by deceiving it into making incorrect or undesired classifications.
This type of attack can lead to significant vulnerabilities in applications
such as intrusion detection systems or malware detection, where the model’s
integrity is compromised.

• availability violation: Availability violation occurs when an attacker dis-
rupts or compromises the normal functioning of a machine learning system
by forcing it to make a large number of errors or misclassifications. This type
of attack is similar to a denial-of-service (DoS) attack, where the primary
objective is to render the machine learning service unavailable to legitimate
users. Availability violation can be achieved by overwhelming the model
with adversarial inputs, causing it to fail or produce unreliable results, thus
affecting its availability for intended users.

• privacy violation: Privacy violation in adversarial machine learning per-
tains to attacks that allow an adversary to infer confidential or sensitive infor-
mation about users or individuals from the model’s responses. For example,
in a privacy violation attack, the adversary might exploit the model’s be-
haviour to glean sensitive data, such as biometric information, demographic
details, or personal preferences, even when such data should remain confi-
dential. This type of attack can have serious privacy implications and is
a significant concern in applications involving personal data and sensitive
information.

Finally, the last attack feature is specificity, which can be targeted or indis-
criminate.

• targeted: In targeted attacks, adversaries have a specific goal in mind. They
aim to manipulate the machine learning model’s behaviour towards partic-
ular instances or a restricted set of instances. These attacks are customised
to exploit vulnerabilities in the model, with the goal of achieving a particu-
lar outcome. Targeted attacks are often designed to mislead the model into
misclassifying specific data points, and they require a deep understanding of
the model’s decision-making process.

130 CHAPTER 8. BACKGROUND AND STATE OF THE ART

• indiscriminate: Indiscriminate attacks are not tailored to specific instances.
The objective of an indiscriminate attack is to disrupt or confuse the model’s
classification process more broadly. These attacks seek to create a general im-
pact, such as increasing misclassifications across various classes or instances,
without focusing on a particular set of targets. Indiscriminate attacks exploit
generic vulnerabilities in the model’s architecture or training data, making
them a broader threat.

8.1.2 Adversary’s Model

Biggio et al. in [16, 14] introduced an attacker model, which can be divided
into four key facets. Firstly, the Adversary’s Goal : what the attacker intends
to target and the desired outcomes. Secondly, the Adversary’s Knowledge: the
knowledge the attacker has with the target system, encompassing their level of
insight. Thirdly, the Adversary’s Capability : the “weapons” the attacker has to
perform the attack. Lastly, the Adversary’s Strategy : how the attacker decides to
attack the machine learning system.

8.1.2.1 Adversary’s Goal

Based on the taxonomy provided in Section 8.1.1, the attacker’s goal is defined
upon the three features: influence, security violation, and specificity. Specifically,
the first feature determines at which stage of the machine learning system’s life-
cycle the attack will be executed: during the learning phase (causative) or the
operational phase (exploratory). The second feature identifies the nature of the
violation the attacker intends to inflict on the system. Lastly, the third feature
identifies the portion of the instance set on which to perform the attack (a re-
stricted subset or the whole set).

The primary objective of the attacker’s goal is to maximise the extent of damage
inflicted on the system; therefore, it can be formulated as an optimisation problem
for identifying the optimal attack strategy. Table 8.1 highlights the relationship
between the influence, specificity, and security violation features [6, 120].

8.1.2.2 Adversary’s Knowledge

The adversary’s knowledge about the model is defined by the amount of informa-
tion it has on how the model was trained. This information is the dataset used
to perform the training, how instances are represented in features, which learning
algorithm is used, which decision function is used, the model parameters and fi-
nally, the output (or feedback) returned by the model in the operational phase.

8.1. ADVERSARIAL MACHINE LEARNING 131

Table 8.1: Adversary’s goal summary based on features influence, specificity, and
security violation. Due to space constraints, the values of the specificity feature,
Targeted and Indiscriminate, are referred to as T and I, respectively.

Integrity Availability Privacy

C
au

sa
ti
ve T

Permit a specific in-
trusion

Create sufficient errors
to make system unusable
for one person or service

Sign into the system as a
specific person

I
Permit at least one
intrusion

Create sufficient errors to
make learner unusable

Sign into the system as an
arbitrary person

E
x
p
lo
ra
to
ry T

Find a permitted
intrusion from a
small set of possi-
bilities

Find a set of points mis-
classified by the learner

Access information about
a specific person

I
Find a permitted
intrusion

Access information of an
arbitrary person

Based on the amount of information the attacker has on the system, it is possible
to define three main attack scenarios as reported by Biggio and Roli in [16]:

White-Box Scenario In a white-box scenario (also known as a perfect-knowledge
scenario), the adversary has complete knowledge of the target machine-learning
model. This means the attacker is aware of the model’s architecture, parameters,
training data, and internal workings. With this detailed insight, the adversary can
carefully craft and execute attacks with a deep understanding of how the model
functions. This scenario allows the adversary to perform highly effective and dam-
aging attacks due to the comprehensive knowledge of the system the attacker
possesses.

Grey-Box Scenario In a grey box scenario (also known as a limited-knowledge
scenario), the information about the target model possessed by the attacker is
partial. This partial knowledge may include some information about the training
data distribution, specific features used by the model, and the model’s internal
details or architecture. For example, in such scenarios, the attacks may have
access to only a portion of the model’s weights or a high-level description of its
structure. In this scenario, the knowledge of the attacker is not complete as in
a “white-box scenario”, and the attacker has to put more effort into producing
damaging attacks.

132 CHAPTER 8. BACKGROUND AND STATE OF THE ART

Black-Box Scenario In a black box scenario (also known as a zero-knowledge
scenario), the attacker has no access to the internal model architecture, param-
eters, or any other privileged information. The attacker typically interacts with
the model by submitting input queries and observing the corresponding output
predictions. With limited knowledge, black-box attackers aim to craft adversarial
examples that can deceive the model without a deep understanding of its inner
workings. Black-box attacks are generally more challenging due to the lack of
information but are relevant in real-world scenarios where the attacker has very
limited knowledge of the model it wants to attack.

8.1.2.3 Adversary’s Capability

The adversary’s capability encompasses the arsenal of tools and resources the
attacker has to perform an attack. This not only includes determining which
dataset the attacker can potentially compromise but also extends to defining the
nature of the attack itself. Specifically, it may involve choosing between tampering
with the training set or manipulating input instances during the operational phase
(commonly referred to as the test set). Furthermore can indicate the classes of
instances the attacker is able to target.

For instance, consider the attacker’s flexibility to execute different types of
attacks. One option is the causative attack, where the attacker interferes with
both the training and test sets, thereby initiating a poisoning attack aimed at
compromising the integrity of the machine-learning system. Alternatively, the
attacker can employ an evasion attack, which exclusively targets the test set to
deceive the model.

Furthermore, the adversary’s capability also pertains to the allocation of re-
sources, often quantified in terms of a budget. This encompasses the number of
instances that can be injected or modified within each dataset and the effort re-
quired to modify the features of an instance. The careful management of these
resources plays a critical role in crafting effective adversarial strategies while ad-
hering to predefined attacker resource constraints.

8.1.2.4 Adversary’s Strategy

The adversary’s strategy specifies how the attacker should execute the attack to
pursue the adversary’s goal while leveraging on the adversary’s knowledge and
adhering to the adversary’s capability. In essence, the adversary’s strategy de-
lineates the attacker’s approach to maximise its goal by manipulating instances
within the training and/or test set while staying within the constraints imposed
by its capability and knowledge.

8.1. ADVERSARIAL MACHINE LEARNING 133

In the AML contest, in most cases, the problem of determining the most effec-
tive attack strategy translates into solving an optimisation problem. The objective
function of this problem aligns with the adversary’s goal. The attacker’s capability
imposes the problem’s constraints, and how the optimisation is solved depends on
the adversary’s knowledge of the system.

8.1.3 Threat Model

Another important component in the context of adversarial machine learning is
the threat model. The threat model specifies the upper bound constraints within
which the machine learning system can be attacked, in other words, its degree
of freedom of an attacker with unlimited resources. The threat model imposes
constraints on which features an attacker can modify, how much each feature can
be perturbed, and the cost of making modifications to each feature.

It is important to note that although the threat model is closely related to the
adversary’s model, they are two distinct entities. Specifically, the threat model
outlines the full spectrum of potential attacks the system may encounter, whereas
the adversary’s model manages the stronger threat that an attacker can pose with
its capability and resources. Consequently, the attacker might produce attacks
with less strength than what the threat model permits, often due to resource
limitations. Nonetheless, it’s crucial to underscore that the attacker can never
execute an attack surpassing the constraints imposed by the threat model.

8.1.4 Type of Attack

Adversarial machine learning attacks can be categorised into classes based on
the attacker’s goal. These attacks aim to undermine the integrity and reliability
of machine learning models, often with harmful consequences. Below is a brief
description of the most common attack types found in the literature [16, 137, 67]:

• Evasion Attacks: Evasion attacks, also known as adversarial perturbations,
focus on manipulating input data to mislead a machine learning model dur-
ing its operational phase. These attacks entail making subtle, imperceptible
alterations to input instances in an attempt to deceive the model into gener-
ating incorrect predictions. For example, an image classifier might be fooled
into misclassifying a stop sign as a yield sign with only slight, strategically
engineered modifications.

• Poisoning Attacks: Poisoning attacks primarily target the training phase
of machine learning systems. The attacker injects malicious instances into
the training dataset, thereby influencing the learning process to yield a model

134 CHAPTER 8. BACKGROUND AND STATE OF THE ART

that is inherently flawed. Poisoning attacks can involve introducing per-
turbed data points or strategically selected instances meant to manipulate
the model’s decision boundaries. Once trained on this corrupted set of data,
the model’s integrity becomes compromised, resulting in incorrect classifica-
tions during the operational phase.

• Model Inversion Attacks: Model inversion attacks focus on breaching the
privacy of the model’s training data. The attacker employs this approach
to reverse-engineer sensitive information that the model has been trained
on, often by exploiting subtle information leaks or output observations. By
deducing underlying patterns and sensitive features, model inversion attacks
compromise the privacy and security of the individuals or organisations that
contributed their data to train the model.

• Transferability Attacks: Transferability attacks leverage the intriguing
property that adversarial examples designed to deceive one machine learning
model can often be successfully employed to fool other models as well, even
if they are dissimilar. These attacks enable adversaries to craft a single
adversarial instance that, when misclassified by one model, can also deceive
another model. Transferability underscores the universal challenges posed
by adversarial inputs, emphasising the need for robust defences against such
threats.

8.2 Evasion Attacks

The main contribution of this thesis to the domain of adversarial machine learning
primarily focuses on making tree-based machine learning classifiers robust and cer-
tifiable when subjected to evasion attacks. In particular, following the attack tax-
onomy introduced above, we focus our discussion on evasion attacks: exploratory
attacks, producing integrity violations with indiscriminate targets in a white-box
scenario.

An evasion attack occurs during the operational phase of the machine learning
system [16, 11], e.g., when the model is applied in production and interacts with
users. Given an already trained model, the attacker manipulates the legitimate
input instances to force the model to produce incorrect predictions. These carefully
manipulated instances are referred to as adversarial examples or evasion instances.

A common example of a real-world scenario illustrating this type of attack
is the one of an aggressive seller attempting to deceive an email spam detection
system. The seller carefully obfuscates the advertising content of the email in a
way that the anti-spam system classifies that email as “ham” instead of “spam”.

8.2. EVASION ATTACKS 135

However, the modification cannot be too extreme, or the advertising message the
seller wants to convey becomes illegible even to humans.

In the creation of evasion attacks, the attacker is constrained by the adversary’s
model and the threat model. Consequently, an attacker executing an evasion
attack must adhere to different constraints. These constraints may involve the
maximum number of features allowed to be modified (attackable features) and the
degree to which each feature can be perturbed (attack magnitude). Generally,
the perturbations that the attacker can make are modelled using the notion of
cost. The costs are treated as resources the attacker must expend to carry out
the attack. The attacker has a limited budget to spend on modifying the instance.
For example, the attacker can modify a certain feature only by spending a certain
cost. If the cost of the modification exceeds the available budget, the modification
cannot be made. Therefore, the attacker can modify the instance as long as it
has a sufficient budget. The adversary’s strategy is to find the perturbation that
maximises the prediction error while staying within the budget and threat model
constraints.

The discovery of the existence of evasion attacks has raised some interesting
observations. Multiple times, it has been shown that the perturbations applied
to instances to generate effective evasion attacks are imperceptible to the human
eye [16, 126, 75, 96, 160], and humans can easily correctly classify these evasion
instances. This has led to observations such as the one made by Goodfellow et
al. in [75], where machine learning models do not learn the semantics of the
class. Therefore, even a slight alteration of the instance can produce a completely
different prediction.

8.2.1 Formal Definition

More formally, given a classifier h and let x ∈ X ⊆ Rd be a legitimate instance
represented as a d-dimensional real-valued vector x = (x(1), . . . , x(d)) with label
y ∈ Y . An attacker A aims to manipulate x to generate an evasion instance
z ∈ A(x) such that h(x) ̸= h(z). The set A(x) is the adversarial perturbation
set and resembles the formalisation of the adversary’s model. A(x) contains all
the possible evasion instances generated by the attacker under the constraints of
the adversary’s model and threat model. Different adversary’s models and threat
models generate different adversarial perturbation sets.

The following formalisation provides a common example of an adversarial per-
turbation set for evasion attacks:

A(x) = {z | z ∈ X ∧ ∥x − z∥ρ ≤ δ ∧ x lb ⪯ z ⪯ x ub ∧
∑

f∈B cf ≤ b} (8.1)

where B is the set of attacked features, c is a d-dimensional vector in Nd indicating
te cost cf to perturb each feature f , and b the attack’s budget. Then, u ⪯ v means

136 CHAPTER 8. BACKGROUND AND STATE OF THE ART

that each element of u has to be less or equal to the corresponding element in v ,
and x lb and x ub are respectively the lower bound and upper bound that the evasion
instance z can assume.

The three constraints in Equation 8.1 ensure consistency between z and the
adversary’s capability. The constraint ∥x − z∥ρ ≤ δ implies that the difference
between x and z , with respect to the Lρ-norm or any distance function must be
at most δ ∈ R. The box constraint x lb ⪯ z ⪯ x ub has two roles. First, ensures
that the instance z remains within a fixed bound of values, e.g., by setting x lb = 0
and x ub = 1, the instance z is bounded in [0, 1]d. Second, it allows to model non-
attackable features; i.e., to ensure f being a non-attackable feature, it is sufficient
to impose x

(f)
lb = x

(f)
ub = x(f). Finally,

∑
f∈B cf ≤ b ensures that the overall cost of

perturbing the features in B does not exceed the attacker’s budget b.
To achieve this goal, attackers typically solve an optimisation problem to find

the minimal perturbation of x that adheres to the constraints of the adversary’s
model and the threat model, enabling the creation of the evasion instance z that
deceives the model. However, there are two different types of evasion attacks:
binary evasion attacks and multiclass evasion attacks, each with different
goals and optimisation strategies.

8.2.1.1 Binary Evasion Attacks

In the context of adversarial machine learning, a binary evasion attack is a type
of attack in which an attacker seeks to manipulate a binary classifier to produce a
desired binary response (often a “positive” or “negative” classification). In other
words, the goal of the attack is to influence the model to make a specific decision,
such as classifying an input as positive when it should actually be classified as
negative, or vice versa.

This type of attack can have significant consequences in applications where bi-
nary decisions are critical, such as malware classification, financial fraud detection,
or medical diagnosis. The adversary’s goal is to push an instance as far as possible
beyond the decision boundary that divides the two classes.

More formally, in a binary classification task with Y = {−1, 1}, it is possible to
generalise the intent of the attacker to look for an adversarial example to deceive
the model h through the following optimisation problem [120]:

argmin
z∈A(x)

h(z)y

where the prediction h(z) denote the confidence score of the binary classifier h on
the evasion instace z . The smaller the h(z)y value, the larger the error produced
by h in predicting z .

8.2. EVASION ATTACKS 137

(a) Linear model (b) Non-linear model

Figure 8.1: Binary evasion attacks. The regions around the point x represent the
constraint imposed by ∥x − z∥∞ ≤ δ, i.e., the L∞-norm.

Figure 8.1 shows two examples of binary evasion attacks in the context of a
linear and a non-linear model, respectively. Note that in the experimental section
of this part of the thesis, we primarily focus on binary evasion attacks.

8.2.1.2 Multiclass Evasion Attacks

In a multiclass problem, the machine learning system must discriminate an instance
belonging to a specific class among many others. In the context of adversarial
machine learning, a multiclass evasion attack occurs when an attacker tries to
manipulate a multiclass classifier to force it to classify the evasion instance in any
(or in a specific class) of the available classes.

In this context, the attacker can perform two types of attack [126]:

• Error-Generic Evasion Attacks: With an error-generic evasion attack,
the attacker attempts to misclassify an instance into one of the other classes.

• Error-Specific Evasion Attacks: With an error-specific evasion attack,
the attacker attempts to misclassify an instance into a specific class.

In particular, in the error-generic scenario, the adversary has an interest in at-
tacking the model, regardless of the class in which the adversarial example is
misclassified. It is sufficient that the ending class is different from the original.
For example, a well-known criminal has an interest in not being recognised by a

138 CHAPTER 8. BACKGROUND AND STATE OF THE ART

video surveillance system, but he is not interested in the identity with which he is
mistakenly associated. Instead, in the error-specific scenario, the attacker wants
to be classified in a specific class. This can be seen as a person attempting to au-
thenticate as a specific user within a system. In this case, the attacker is interested
in being misclassified as that person. Below, for each scenario, the optimisation
problem that the adversary must solve to create an evasion instance is formalised.

Error-Generic Evasion Attacks To generate an error-generic evasion instance,
the attacker must solve the following optimisation problem:

argmin
z∈A(x)

∆(z)

where ∆(z) is defined as:

∆(x) = ha(x)−max
a̸=b

hb(x).

and where a, b ∈ Y and hy(x) denotes the confidence score of the classifier h on
the instance x for any class y ∈ Y . The label a represents the original class of the
instance x , while b represents any class different from the original one, in which
the attacker tries to misclassify the evasion instance z . The maximisation problem
maxa̸=b hb(x) looks for the wrong class b ̸= a, which hb(z) produces the highest
prediction score. Finally, the minimisation of ∆(z) forces the optimisation problem
to look for the perturbed instance z that produces the minimum predicted score
difference between the original class a and the class that generated the highest
prediction score b. In other words, this means finding the evasion instance z
misclassified into the closest class to x .

Error-Specific evasion attacks To generate an error-specific evasion instance,
the attacker must solve the following optimisation problem:

argmax
z∈A(x)

∆(z)

The difference with the error-generic scenario lies exclusively in the transfor-
mation of the minimisation problem into a maximisation problem. The label b
represents the adversary’s target class, the one in which the attacker wants its
evasion instance z to be misclassified. On the other hand, label a represents the
original class of the legitimate instance x .

In this case, the attacker looks for the best perturbation of x , which generates
the highest score difference between the target class b and the original class a.
The larger the difference, the greater the model’s error when it misclassifies z as
b instead of a.

8.2. EVASION ATTACKS 139

(a) Error-generic evasion attack (b) Error-specific evasion attack

Figure 8.2: Multiclass evasion attacks. Figure (a): the attacker looks for the
closest class to x to generate an error-generic evasion instance z . Figure (b): the
attacker looks for an error-specific evasion instance z ∈ A(x) with the highest
score in the target class ▷ (triangle).

Finally, Figure 8.2 points out the differences between error-generic (Figure
8.2a) and error-specific (Figure 8.2b) evasion attacks.

8.2.2 Common Adversary’s Constraints

Recall the definition of the adversarial perturbation set A(x) provided in Equation
8.1. Commonly, the constraints employed to model the attacker’s capability take
the form of ∥x−z∥ρ ≤ δ. This constraint indicates that the evasion instance z can
deviate from the original instance x by at most δ according to a certain constraint
modelled by ∥·∥ρ. These constraints are generally modelled using Lρ-norm. The
most common norms used in adversarial machine learning are as follows:

• The L0-norm: ∥x − z∥0 =
∑d

f=1 1[x
(f) ̸= z(f)]

• The L1-norm: ∥x − z∥1 =
∑d

f=1 |x(f) − z(f)|

• The L2-norm: ∥x − z∥2 =
√∑d

f=1(x
(f) − z(f))2

• The L∞-norm: ∥x − z∥∞ = maxf |x(f) − z(f)|

140 CHAPTER 8. BACKGROUND AND STATE OF THE ART

During the experimental phase of this part of the thesis, the primary norms
used are the L0-norm and the L∞-norm.

8.2.3 Evaluation Metrics

In the context of a machine learning model subjected to evasion attacks, there
are generally two scenarios for performance evaluation: performance under nor-
mal conditions, i.e., when the model is not under attack, and performance under
attack, i.e., the model’s performance when exposed to malicious instances. Be-
low are summarised the most common metrics for evaluating the performance of
classification models under normal conditions:

The Accuracy (ACC) metric is probably the most well-known metric for as-
sessing the performance of a classification model. It is calculated by measuring the
ratio of correctly predicted instances to the total number of available instances.
The Precision and Recall metrics, previously discussed for ranking in Section 3.2.2,
calculate the fraction of positive instances predicted correctly compared to all in-
stances predicted as positive and the fraction of positive instances predicted cor-
rectly compared to all actual positive instances. Furthermore, the Area Under the
Precision-Recall Curve (AUC-PR) metric assesses the trade-off between Precision
and Recall. This metric provides a nuanced perspective, particularly beneficial
when dealing with imbalanced datasets where one class significantly outweighs the
other. The Receiver Operating Characteristic - Area Under the Curve (ROC-AUC)
[18] metric measures the model’s ability to distinguish between positive and neg-
ative classes. A value of 1 indicates a perfect model, while 0.5 indicates a model
that is no better than a random choice. The Log Loss is another critical metric,
measuring the accuracy of predicted probabilities compared to actual probabil-
ities. Minimising Log Loss indicates a model’s proficiency in providing precise
probability estimates. The Confusion Matrix offers a comprehensive overview of a
model’s predictions, detailing the counts of True Positives, True Negatives, False
Positives, and False Negatives. This matrix serves as the foundation for deriving
various performance metrics. Matthews Correlation Coefficient (MCC) [124] is a
single-value metric that encapsulates the overall quality of a classifier, considering
the balance between classes. A value of +1 denotes perfect predictions, 0 suggests
random predictions, and −1 signifies perfect incorrect predictions.

Many of the just introduced metrics can be adapted to measure the model’s
performance under attack. For example, the Robust Accuracy (or Robustness)
measures the percentage of correct model predictions on evasion instances com-
pared to the total number of evasion instances. Robust Precision measures the
fraction of adversarial instances correctly predicted as positive compared to the
total number of adversarial instances classified as positive, while Robust Recall
measures the fraction of adversarial instances correctly predicted as positive com-

8.2. EVASION ATTACKS 141

pared to the total number of actual positive adversarial instances. The AUC-ROC
metric can also be used to evaluate the model performance under adversarial at-
tacks by measuring the model’s ability to distinguish between positive and negative
classes on evasion instances. Additionally, there is a less strict version of Robust-
ness called Stability, which measures how many legitimate instances under attack
do not cause a change in the model’s prediction, regardless of whether the model’s
prediction on the legitimate instance is correct or not.

Below, we delve into the details of the metrics used to evaluate the model’s
accuracy and performance under attack in the studies covered in this part of the
thesis.

8.2.3.1 Accuracy

Among the evaluation metrics under normal conditions listed above, the one we
utilised for the experimental part of this thesis is Accuracy (ACC). Let D be a
set of legitimate instances, i.e., instances not manipulated by the attacker, and let
h be the classifier we want to evaluate. For each instance (x , y) ∈ D, Accuracy
measures the ratio of instances correctly classified by h over the total number of
instances in the set D. Formally, we can define the Accuracy metric as follows:

ACC =

∑
(x ,y)∈D 1[h(x) = y]

|D| (8.2)

8.2.3.2 Stability

Given an instance x ∈ X , the classifier h, and let A(x) be the adversarial per-
turbation set of evasion instances z , the classifier h is stable on x with respect to
A(x) if the following definition holds:

Definition 5 (Stability). The classifier h is stable on the instance x if and only
if, for every adversarial instance z ∈ A(x), we have h(z) = h(x).

Stability is useful for the security certification of classifiers: if the classifier h is
stable on the instance x , no adversarial instance z ∈ A(x) can be assigned a label
different from the classifier prediction h(x); hence no evasion attack is possible.
However, stability does not capture whether a classifier is useful in practice: for
example, a trivial classifier which always predicts a constant class is stable for any
instance in X .

8.2.3.3 Robustness

Due to the lack of accuracy concerns in the definition of stability, the actual
property of interest for classifiers deployed in adversarial settings is robustness,

142 CHAPTER 8. BACKGROUND AND STATE OF THE ART

which additionally requires the classifier to perform correct predictions.
Given an instance x ∈ X with label y ∈ Y , the classifier h, and let A(x) be

the adversarial perturbation set of evasion instances z , the classifier h is robust
on x with respect to A(x) if the following definition holds:

Definition 6 (Robustness). The classifier h is robust on the instance x if and
only if h(x) = y and h is stable on x .

Regarding the metrics for assessing the model’s performance under attack, we
employed Robustness (or Robust Accuracy). This metric evaluates the model’s
performance by taking into account the evasion instances generated by the at-
tacker. Given a set of instances D, the Robustness (R(A)) metric measures how
many instances x ∈ D are robust for classifier h under the attacks generated by
the adversary’s model A. In other words, the Robustness measures for how many
instances x ∈ D there not exists an evasion instance z ∈ A(x) such that h(z) ̸= y,
i.e., a successful attack. Formally, given an attacker A (i.e., an adversary’s model),
we define the Robustness metric as follows:

R(A) =

∑
(x ,y)∈D 1[∀z ∈ A(x) |h(z) = y]

|D| (8.3)

Note that Robustness is computationally expensive to compute, as it requires
the generation of all evasion instances z ∈ A(x) for each x ∈ D.

8.2.4 Countermeasures to Evasion Attacks

The countermeasures that can be used to defend machine learning systems against
evasion attacks can essentially be divided into two categories: creating more robust
models against evasion attacks by sacrificing model accuracy in non-adversarial
scenarios and designing algorithms that provide a fast robustness verification or
certification of the machine learning system. This section is then divided into two
parts. The first part focuses on the state of the art in developing more robust
machine learning models. The second part covers the verification and certification
of the robustness of the models.

For both sections, special attention is given to tree-based learning algorithms.
The reason behind this is that, over the last years, research in this domain has
primarily focused on linear classifiers [109, 15] and neural networks [160, 75], ne-
glecting tree-based models. Decision trees are interpretable models [162], yielding
human-understandable predictions regarding syntactic checks over domain fea-
tures, which is particularly appealing in the security setting. Moreover, deci-
sion trees ensembles are nowadays one of the best methods for dealing with non-
perceptual problems and Learning to Rank tasks.

8.2. EVASION ATTACKS 143

8.2.4.1 Adversarial Robustness Enhancement

As the vulnerability of machine learning models to various types of attacks came to
light, researchers in the domain of machine learning actively engaged in designing
robust models, addressing both linear and non-linear models. For example, Sup-
port Vector Machine (SVM) [52], a well-known model in ML, was deeply examined
by Biggio et al. in [12], revealing its susceptibility to evasion, poisoning, and pri-
vacy attacks. The same work provided countermeasures for each attack through
an adversary-aware design of SVM models. In contrast, Chen et al. in [48] in-
troduced Randomized-SVM, a version of SVM resistant to generalised adversarial
attacks under uncertainty, achieved by training a distribution of classifiers instead
of a single one.

An interesting and widely used technique for enhancing model robustness is ad-
versarial training. Adversarial training involves incorporating evasion instances,
alongside legitimate instances, into the training set during the model training
phase. This approach allows the model to learn a decision boundary that is more
robust against evasion attacks. The effectiveness of adversarial training is highly
dependent on the strength of the generated attacks and the capability of the at-
tack generator to distribute the attacks across different areas of the feature space,
ensuring better model generalisation.

The vulnerability of neural networks (NN) to evasion attacks was extensively
investigated by Goodfellow et al. in [75]. They attributed the susceptibility of NN
models to evasion attacks to the linear nature of NN in high-dimensional spaces.
In the same work, they provided a fast method for generating evasion instances
against NNs, and these instances were used to train robust maxout networks [76]
through adversarial training.

Kurakin et al. in [96] proposed a way to scale adversarial training efficiently
to large models and datasets, along with a solution to the label leaking effect
that causes adversarially trained models to be more robust on perturbed instances
than on original instances. Madry et al. [117], instead, enhanced the robustness of
neural networks through robust optimisation, utilising a natural saddle point for-
mulation to capture security against adversarial attacks. Building upon this work,
Cai et al. in [29] extended the concept of adversarial training. They advocated
for a gradual injection of increasingly stronger evasion instances, leading to more
robust models than those trained immediately with stronger attacks. They called
this strategy Curriculum Adversarial Training ; an optimised adversarial training
approach. In addition, to prevent the model from catastrophic forgetting problem,
i.e., forgetting the weakest attacks, they introduced the batch mixing technique
during the training phase. This technique involves introducing lower-intensity
attacks during the training of stronger attacks.

The literature also presents works aimed at enhancing the robustness of tree-

144 CHAPTER 8. BACKGROUND AND STATE OF THE ART

based models. Kantchelian et al. in [92] devised two new algorithms to generate
evasion instances tailored for tree-based ensembles such as gradient boosted deci-
sion trees and random forests. The first algorithm relies on Mixed Integer Linear
Programming (MILP), which identifies the optimal solution at a high computa-
tional cost. The second algorithm, named symbolic prediction, prioritises speed
over optimality but still produces effective evasion instances. This last algorithm
was used to train hardened GBDT models through adversarial boosting (i.e., adver-
sarial training applied at each boosting iteration), with evasion instances generated
by the symbolic prediction algorithm. These algorithms empirically demonstrated
the vulnerability of both random forests and GBDTs to evasion attacks and high-
lighted how adversarial boosting can enhance the robustness of tree-based learning
algorithms.

Chen et al. [45] designed an algorithm named Robust Split, aiming to create
reliable models robust against evasion attacks by formulating the decision tree
training process as an optimisation problem for determining the best splitting
point. Robust Split considers the distance between data points and optimises
worst-case performance under adversarial perturbations. Although models trained
with Robust Split exhibit slightly lower accuracy on legitimate instances, they are
more robust when facing evasion instances.

Subsequently, Calzavara et al. [36] developed a novel method for learning
decision trees that are simultaneously accurate and nearly insensitive to evasion
attacks. The learning algorithm, named Training Evasion-Aware Decision Trees
(TREANT), serves as a base-learning algorithm to train the base learners of a
random forest. In essence, the TREANT algorithm does not substantially differ
from the learning algorithm of a normal decision tree. The model’s robustness
is guaranteed by how the dataset is partitioned during the tree’s growth phase.
During dataset division, the algorithm ensures that the loss resulting from the
division is the lowest compared to the maximum loss generated by all possible
attacks. To do so, the algorithm exploits the optimisation problem designed by
Madry et al. in [117].

8.2.4.2 Certified and Verifiable Model Robustness

Alongside the research to develop more robust models against evasion attacks,
a branch of research is dedicated to creating learning algorithms that are verifi-
able or certifiable by design or algorithms that provide robustness verification or
certification for already trained models.

Providing robustness certification means finding the minimal perturbation for
which no effective attack exists or finding a lower bound of robustness where
false negatives, i.e., legitimate instances classified as attacks, may occur but not
false positives, i.e., attacks classified as legitimate. On the other hand, robustness

8.2. EVASION ATTACKS 145

verification focuses on checking whether, given a legitimate instance, there exists an
effective adversarial example without actually generating all the evasion instances
in the adversarial perturbation set A(x).

It is noteworthy that in the literature, the distinction between robustness cer-
tification and verification is not always clear-cut, and the two terms are often used
interchangeably. Additionally, sometimes, the former is called sound verification,
while the latter is called complete verification.

These algorithms aim to compute model robustness more quickly, thereby cir-
cumventing the intractability of generating all possible attacks to verify the exis-
tence of an effective evasion attack. In fact, Kantchelian et al. in [92] demonstrated
that verifying security against evasion attacks for decision tree ensembles is NP-
complete when malicious perturbations are modelled with an arbitrary norm.

For this reason, several algorithms have been developed to make machine learn-
ing models verifiable or verify existing models. Chen et al. in [46] addressed the
robustness verification problem for general tree-based models, including decision
trees, random forests, and gradient boosted decision trees. They presented a sim-
ple linear-time algorithm for verifying a single tree. Additionally, they designed a
solution for tree ensembles by formulating the verification problem as a max-clique
problem on a multipartite graph with bounded boxicity, which, under certain con-
ditions, can be executed with a polynomial-time algorithm.

Building on the work of Gehr et al. in [73] for neural networks, Ranzato and
Zanella in [145] applied the concept of abstract interpretation to develop a tool
called Silva for the formal verification of robustness and stability properties of
tree-based ensembles. Silva utilises an abstract domain of not necessarily closed
real hyperrectangles and is capable of conducting complete robustness checks of
standard adversarial perturbations and outputting concrete adversarial attacks.

Leino et al. in [100] formalised a notion of global robustness, capturing the
operational properties of online local robustness certification while providing a
natural learning objective for robust training. Local robustness is the classical
definition of robust and refers to the model’s robustness computed locally at the
instance level, i.e., the perturbations near individual instances. Global robustness
refers to the model robustness with respect to the whole feature space. They
achieved global robustness by introducing a special class representing instances
falling within an area near the decision boundary, where a perturbation could
lead to a class change. If an instance falls within these areas, the prediction is
rejected. Finally, this work demonstrated how widely-used architectures can be
easily adapted to this objective by incorporating efficient global Lipschitz bounds
into the network, resulting in certifiably constructed models that achieve state-of-
the-art verifiable and clean accuracy.

Yang et al. in [183] focused on providing certified robustness for ensemble

146 CHAPTER 8. BACKGROUND AND STATE OF THE ART

models, along with sufficient and necessary conditions for robustness for differ-
ent ensemble methods. They discovered that diversified gradients and a large
confidence margin are sufficient and necessary conditions for certifiably robust
ensemble models under the model-smoothness assumption. Then, they provide
a bounded model-smoothness analysis based on the proposed Ensemble-before-
Smoothing strategy. Through these theoretical findings, they propose lightweight
Diversity Regularized Training (DRT) to train certifiably robust ensemble ML
models.

In a more recent research effort by Calzavara et al. in [32], they exploited a
restricted class of decision tree ensembles called large-spread ensembles to design a
verifiable learning algorithm for training polynomial time verifiable models. More-
over, they proved that large-spread ensembles are more robust than traditional
ensembles against evasion attacks at the cost of an acceptable loss of accuracy in
the non-adversarial setting.

8.2.5 Benchmark Datasets

In this section, we introduce the classification datasets employed in the experi-
mental sections of the research encompassed within this part of the thesis. Table
8.2 summarises the fundamental details of these datasets. The list comprises a
total of 8 publicly available datasets, each featuring a varying number of classes,
ranging from 2 to 11.

As previously mentioned, the works presented in this part of the thesis only
focus on binary classification tasks. Consequently, in the case of multiclass datasets
(more than two classes), we selected and isolated two specific classes or merged
classes with fewer instances to create a larger class suitable for binary classification.
The details of each dataset transformation are addressed in the corresponding
work’s Chapters.

• Wine [66]: The Wine dataset is a well-known dataset for classification.
The dataset contains information pertaining to the outcomes of a chemical
examination conducted on wines cultivated in a specific Italian region. These
analyses were conducted on wines originating from three distinct cultivars.
The analysis focused on quantifying the presence of 13 different constituents
within each variant of the wines. The classification task aims to identify the
cultivar of origin based on the features representing 13 different constituents
within the wine. The dataset contains 3 classes; however, in the experiments,
we collapsed two classes in one class to perform binary classification tasks.
In this scenario, an attacker alters the constituents of the wine coming from
a cultivar to make it appear as if it comes from another cultivar. The dataset
can be downloaded from https://archive.ics.uci.edu/dataset/109/wine.

https://archive.ics.uci.edu/dataset/109/wine

8.2. EVASION ATTACKS 147

Table 8.2: Datasets properties.

Dataset #features #instances #classes

Wine [66] 13 178 3
Spam Base [84] 57 4,601 2
Breast Cancer D [158] 30 569 2
Breast Cancer O [10] 9 683 2
MNIST [99] 784 70,700 10
Diabetes [156] 8 768 2
Cod-RNA [167] 8 59,535 2
Sensorless [7] 48 58,509 11

• Spam Base [84]: The Spam Base dataset focuses on the “spam” concept,
encompassing various forms such as advertisements for products/websites,
get-rich-quick schemes, chain letters, etc. The objective of the classification
task associated with this dataset is to correctly determine whether a given
email is spam or not. The Spam Base dataset is well-known in the adver-
sarial machine learning domain. In this scenario, the attacker’s aim is to
deceive the model to classify spam emails as ham (not spam). The dataset
can be downloaded from https://archive.ics.uci.edu/dataset/94/spambase.

• Breast Cancer D [158]: The Breast Cancer D dataset is the Breast
Cancer Wisconsin (Diagnostic) dataset, which includes features ex-
tracted from breast masses classified as “benign” or “malignant”. This
dataset is used to train binary classification models to determine whether
a breast mass is benign or malignant. In detail, the dataset involves fea-
tures computed from a digitised image of a fine needle aspirate (FNA) of
a breast mass. These features specifically capture characteristics of the
cell nuclei present in the image. The dataset can be downloaded from
https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic.

• Breast Cancer O [10]: The Breast Cancer O dataset is the Breast
Cancer Wisconsin (Original) dataset, which includes features extracted
from breast masses classified as “benign” or “malignant”. The dataset con-
tains 16 instances with missing values, which we removed in the experi-
ments. The dataset was acquired by the University of Wisconsin Hospitals,
Madison. It comprises features such as clump thickness, uniformity of cell
size, uniformity of cell shape, marginal adhesion, and others. This dataset
is utilised for training binary classification models to determine whether a
breast mass is benign or malignant. The dataset can be downloaded from

https://archive.ics.uci.edu/dataset/94/spambase
https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic

148 CHAPTER 8. BACKGROUND AND STATE OF THE ART

https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original.

• MNIST [99]: The MNIST dataset comprises a collection of 70,000 images,
each intricately detailed at 28x28 pixels, resulting in a total of 784 pix-
els per image. These images encapsulate handwritten digits ranging from
0 to 9 (ten classes). Each image is represented with a two-dimensional
pixel matrix of greyscale values. The greyscale values of each pixel span
from 0 to 255, providing a spectrum of shades that collectively form the
visual representations of numerical characters. MNIST stands as a funda-
mental benchmark in the realm of machine learning, commonly employed
for training and testing image classification algorithms. The dataset con-
tains 10 classes; however, in the experiments, we isolated two classes and
performed binary classification tasks. The dataset can be downloaded from
https://web.archive.org/web/20220331130319/https://yann.lecun.com/exdb
/mnist/

• Diabetes [156]: The Diabetes dataset originates from the National Insti-
tute of Diabetes and Digestive and Kidney Diseases. The dataset contains
extracted features to predict whether a patient has diabetes or not. The
predictions are based on specific diagnostic measurements contained in the
dataset. The instances were selected under certain constraints from a larger
database, with a focus on female patients who are at least 21 years old and of
Pima Indian heritage. The dataset comprises various medical predictor vari-
ables, such as the number of pregnancies, BMI (Body Mass Index), insulin
level, age, and others. Through this dataset, it is possible to train binary
classifiers to predict whether a patient has diabetes or not. The dataset can
be downloaded from https://www.kaggle.com/datasets/uciml/pima-indians-
diabetes-database.

• Cod-RNA [167]: The Cod-RNA dataset provided by Uzilov et al. in [167]
contains two classes and is used in binary classification tasks. The dataset is
designed for detecting non-coding RNAs based on the predicted free energy
change for secondary structure formation. The dataset can be downloaded
from https://www.csie.ntu.edu.tw/c̃jlin/libsvmtools/datasets/binary.html#
cod-rna.

• Sensorless [7]: The Sensorless dataset comprises features extracted
from electric current drive signals, where the drive system includes both in-
tact and defective components. The dataset encompasses 11 distinct classes,
each representing a different condition. These conditions have been measured
multiple times under 12 operating conditions, encompassing various speeds,
load moments, and load forces. The dataset contains 11 classes, so it is

https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original
https://web.archive.org/web/20220331130319/https://yann.lecun.com/exdb/mnist/
https://web.archive.org/web/20220331130319/https://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#cod-rna
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#cod-rna

8.2. EVASION ATTACKS 149

suitable for multiclass classification tasks. However, during the experiments,
we isolated two classes and performed binary classification tasks. The dataset
can be downloaded from https://archive.ics.uci.edu/dataset/325/dataset+for
+sensorless+drive+diagnosis.

https://archive.ics.uci.edu/dataset/325/dataset+for+sensorless+drive+diagnosis
https://archive.ics.uci.edu/dataset/325/dataset+for+sensorless+drive+diagnosis

150 CHAPTER 8. BACKGROUND AND STATE OF THE ART

8.3 Summary

In this chapter, we introduced the fundamental concepts and knowledge necessary
to understand our contribution to the domain of Adversarial Machine Learning.
Below is a brief summary of the key concepts discussed in this chapter.

• Adversarial Machine Learning: In this section, we introduced the con-
cept of adversarial machine learning affecting the machine learning systems.
We provided a detailed description of the adversary’s model, encompassing
its goal, knowledge, capability and strategy, and the difference to the threat
model. Lastly, we briefly described the types of adversarial attacks.

• Positioning of This Work: In this thesis, we focus on making tree-based
binary classifiers robust and certifiable when subjected to evasion attacks
characterised as exploratory attacks, producing integrity violations with
indiscriminate targets in a white-box scenario.

• Evasion Attacks: Given that this part of the thesis primarily focuses on
evasion attacks, we furnished a detailed definition of evasion attacks and
made a distinction between binary and multiclass evasion attacks. We intro-
duced the concept of the adversarial perturbation set, i.e., the collection
of all evasion instances generable by the attacker starting from a legitimate
instance. Finally, we presented the most common constraints used to model
the adversary’s model and threat model.

• Evaluation Metrics: We introduced the most common metrics used in
machine learning to assess the effectiveness of classification models with or
without the presence of evasion attacks. Among the presented metrics, there
is theAccuracy, which measures the number of instances classified correctly
and the Robustness, which measures how many instances do not have an
evasion instance that produces an incorrect prediction.

• Countermeasures: In this section, we introduced the state of the art in
the domain of adversarial machine learning in a binary classification sce-
nario. We focused specifically on the literature concerning designing robust
learning algorithms robust to evasion attacks and on verify or certify
model robustness under evasion attacks.

• Benchmark Datasets: In the final section of this chapter, we introduced
eight benchmark datasets used in the experiments for evaluating the effec-
tiveness of the models, both with and without the presence of the attacker.
Each dataset possesses distinct characteristics, varying in the number of in-
stances and features.

Chapter 9

Feature Partitioned Forests

In this chapter, we illustrate the work titled “Feature Partitioning for Robust Tree
Ensembles and their Certification in Adversarial Scenarios”, in proceedings as a
full paper at the EURASIP Journal on Information Security, 2021. Further details
can be found in the reference [34].

As mentioned in Section 8.1, machine learning models are deployed in a large
variety of contexts such as system security, health care, control critical processes,
and other [85, 16]. Unfortunately, traditional machine learning algorithms are
proved to be vulnerable to a wide range of attacks, and in particular to evasion
attacks, where an attacker carefully manipulates an input instance to force model’s
prediction errors [11, 131, 138, 128].

In this work, we present a meta-learning algorithm named Feature-Partitioned
Forest (FPF) to train ensembles of decision trees robust against evasion attacks
constrained by L0-norm perturbations. In particular, we focus on binary classi-
fication tasks and show that the proposed algorithm can train models that are
robust by construction. The algorithm benefits from the theoretical property that
the majority of the base learners in the ensemble are never affected by the evasion
instances attacking the model.

The idea behind FPF that provides the theoretical guarantees relies on how
the feature set is partitioned at training time. Specifically, we randomly equi-
partition the set of features and train each tree of the ensemble on a distinct feature
partition. Such sampling limits the number of features considered by a single tree,
and therefore, it limits the number of trees affected by the perturbations on a set
of features.

Along with FPF, we provide two certification methods for our tree-based en-
sembles that efficiently compute a lower bound of the model’s robustness under
attack. Finding a successful attack requires finding a set of features of a given
instance that, if corrupted, affects the prediction of the model. In general, this
requires an exhaustive search of all the possible feature subsets and their possi-

151

152 CHAPTER 9. FEATURE PARTITIONED FORESTS

ble modifications, which becomes quickly unfeasible for powerful attacks or large
feature sets. We show that this problem can be reduced to a partial set cover
problem, and we use efficient set cover algorithms to assess the non-existence of
harmful attacks. By certifying the non-existence of attacks for some instances of a
given set, we can provide an accurate model’s robustness lower bound in polyno-
mial time. Furthermore, we devise a cascading strategy where instances found by
the proposed lower bounds as potentially attackable are eventually evaluated with
a slow exact method. The cascading strategy can reduce the total running time
up to two orders of magnitude and provide an exact local robustness computation.

In summary, the contributions of this work are as follows: i) We design a
novel meta tree-ensemble learning algorithm named Feature-Partitioned Forest
that is robust against adversarial attacks by construction. ii) We provide two
novel certification methods that quickly compute a lower bound of the model’s
robustness on a given set of legitimate instances. iii) We devise an exact cascading
strategy for robustness verification by exploiting the proposed lower bounds as a
fast preprocessing filter.

We experimentally evaluate FPF on three public datasets and show that FPF
trains tree-based ensembles that achieved an improvement of up to 16% in terms
of robustness compared to the baselines. Moreover, we empirically demonstrated
how the proposed robustness lower bound certifiers are accurate and can provide
a 100× speed-up compared to an efficient brute force verifier.

The Chapter is structured as follows. In Section 9.1, we introduce the related
work specific to decision-tree-based ensemble methods in the domain of evasion
attacks. In Section 9.2, we delve into the definition of the threat model and the
adversary’s model. In Section 9.3, we delve into the main contribution of this work.
We introduce Feature-Partitioned Forest and the theoretical guarantees behind it.
In Section 9.4, we introduce the second contribution of this work: two certification
algorithms to compute a lower bound of FPF-based models’ robustness. Moreover,
we provide an efficient cascade verification algorithm for exact robustness compu-
tation. Section 9.5 details the experimental setup used to perform experiments
and the learning algorithms employed to assess the robustness of our solution. In
Section 9.6, the primary outcomes are presented, emphasising the accuracy and
robustness of the learning algorithms, as well as the accuracy and efficiency of the
robustness certifiers and verifiers. Section 9.7 provides in-depth empirical and an-
alytical studies of the behaviour of FPF on varying its hyperparameters. Finally,
in Section 9.8, we summarise our contributions, results, and potential future work.

9.1. RELATED WORK: ROBUST TRAINING 153

9.1 Related Work: Robust Training

Most of the work in adversarial learning regards classifiers, particularly binary
ones. The attacker starts from a legitimate instance that is classified correctly by
the machine learning system and tries to perturb the instance to force the model
to change the predicted class [130, 11, 14, 157, 92, 39, 55, 75]. To prevent these
attacks, different techniques have been proposed for different models, including
support vector machines [15, 181, 48], deep neural networks [78, 75, 139], decision
tree ensembles [92, 45, 36, 4], and others learning algorithms.

As mentioned in Seccion 8.2.4, the main research directions investigated entan-
gling the models’ robustness to evasion attacks divided into enriching the training
dataset (e.g., adversarial training) [92, 160] and attack-aware loss function [45, 36].

Kantchelian et al. in [92] borrowed the idea of the adversarial training ap-
proach from Szegedy et al. [160] and applied it to GBDTs. A greedy algorithm
named symbolic prediction is exploited at each boosting round to create an effec-
tive evasion instance for every legitimate instance in the training set. Then, each
tree in the ensemble is trained on both original and perturbed instances. This ap-
proach has increased the models’s robustness; however, it comes at the expense of
training efficiency. Indeed, the necessity to generate new evasion instances at each
boosting round makes this algorithm impractical for large datasets. Additionally,
as for other adversarial training approaches, evasion instances generated from the
training set may not accurately represent the evasion instances encountered during
the operation phase, potentially resulting in lower accuracy.

Another adversarial learning technique for decision tree ensembles was pro-
posed by Chen et al. in [45], introducing the first tree learning algorithm, here
named Robust Tree (RT), that directly incorporates the attacker into the opti-
misation problem solved during tree construction. The central concept of their
approach, named robust split, redefines the splitting strategy for training exam-
ples at a tree node to account for the impact of the attacker. To mitigate the
complexity of computing all possible evasion attacks, the authors approximated
the attacker’s behaviour.

A similar solution is proposed by Calzavara et al. in [36], where they designed
TREANT. TREANT is a learning algorithm aimed at training robust decision
trees against evasion attacks. While constructing a single tree, the optimal split
is chosen by minimising the loss under attack without introducing any heuristic
approximation. TREANT ensures that every node added to the tree does not
increase the loss under attack for that tree. Finally, multiple trees trained with
TREANT are grouped in an ensemble to increase the model’s accuracy and ro-
bustness.

Another step forward was made by Andriushchenko et al. in [4], where they
proposed an exact solution to optimise loss under attack for an ensemble of decision

154 CHAPTER 9. FEATURE PARTITIONED FORESTS

stumps, i.e., trees having only a root and two leaves. While the proposed approach
is the first to take into consideration the full ensemble, the use of decision stumps
may limit the overall accuracy of the forest.

Calzavara et al. [35] pointed out the problem that most of the adversarial
training approach assumes the use of differentiable learning algorithms to create
evasion attacks. Consequently, adversarial training cannot be directly applied to
machine learning techniques such as ensembles of decision trees. To address this
limitation, they developed an adversarial training approach for gradient boosted
decision trees. Furthermore, to enhance the algorithm’s efficiency, they exploited
the knowledge of tree thresholds, thus reducing the set of possible perturbations
without loss of generality. This allows them to take advantage of differentiable
approximations and makes the optimisation problem tractable.

Vos et al. [170] introduced GROOT, an efficient algorithm for training accurate
and robust decision trees. GROOT analytically calculates the adversarial Gini im-
purity, significantly reducing training time. It achieves a learning algorithm that
is two orders of magnitude faster than competitors [36, 45], with superior perfor-
mance in terms of robustness. Moreover, GROOT allows the definition of a more
expressive threat model, not only constrained by norms but also permitting each
feature to be perturbed with a user-specified parameter, either a maximum dis-
tance or constraints on the direction of perturbation. It also allows the specification
of the target class of attack and a trade-off between accuracy and robustness.

Then, Ranzato et al. [147] proposed a genetic adversarial training algorithm
called Meta-Silvae to train decision trees in order to maximise both accuracy and
robustness to adversarial perturbation. The algorithm relies on a Silva, a com-
plete formal verification based on abstract interpretation designed by Ranzato
and Zanella in [145].

Finally, Tin Kam in [81] devised the Random Subspace method (RSM), a learn-
ing algorithm for training accurate tree-based ensemble models. RSM employs an
autonomous, pseudorandom process to select a small number of dimensions from
a given feature set. The new feature set created from the selection is called sub-
space. During the training phase, each instance in the training set is projected
to this subspace, and each base learner of the ensemble is tainted with instances
projected in a different subspace. In the prediction phase, an instance traverses
each tree of the ensemble and is projected to the same subspace of the tree. The
use of randomisation provides a convenient way to explore the feature space to
provide a more heterogeneous ensemble.

The vast number of subspaces in high-dimensional feature spaces offers more
choices than needed in practice. Hence, while most other classification methods
suffer from the curse of dimensionality, this method can take advantage of high di-
mensionality. Contrary to Occam’s Razor, the classifier improves on generalisation

9.2. THREAT AND ADVERSARY’S MODEL 155

accuracy as it grows in complexity.
RSM produces distributed feature weights, making it a strong candidate as a

method to achieve a good trade-off between accuracy and robustness in adversarial
classification scenarios. In fact, RSM was deeply studied by Biggio et al. in [13]
as an ensemble method to train accurate and robust machine learning models.

RSM shares many similarities with FPF but does not provide any theoretical
guarantees to the model’s robustness. FPF divides the feature set to ensure that
the majority of the ensemble is never involved in an attack by construction. For
example, if the attacker can modify at most any combination of three features,
FPF distributes the feature among the trees in the ensemble to guarantee that any
combination of three features appears in less than half of the ensemble, thus leaving
the majority of weak learners unaltered in their predictions. This robustness by
construction is not guaranteed with RSM where each base learner is trained on a
random subset of the feature set, with possible repetition among weak learners,
and so, in the worst case, an attack on a feature can involve the entire ensemble.

Finally, research in this area has also focused on verifying the robustness of
the models under attack. It is worth noting that while the attacker looks for an
effective attack, the evaluation process must verify that no effective attack exists,
and this process is much more costly, if not infeasible. This difficulty and the high
computational cost are caused by the large number of potential adversary attacks.

Kantchelian et al. in [92] proved that the problem of providing a robustness
verification for tree-based ensembles is already NP-hard regardless of the Lρ-norm
adopted. Chen et al. in [46] showed that verifying the robustness of a forest F
with at most l leaves per tree has cost min{O(l|F |), O((2|F |l)|F|)} assuming a L∞-
norm attacker. Andriushchenko and Hein in [4] demonstrated the feasibility of
robustness verification for simplified decision trees, known as decision stumps, i.e.,
trees with only two leaves. Additionally, recent research by Ranzato and Zanella
in [145] used abstract interpretation to address verification of tree-based ensemble.
Furthermore, Calzavara et al. in [32] utilised a specific category of decision tree
ensembles termed large-spread ensembles to develop a verifiable learning approach,
facilitating the training of polynomial time verifiable models.

In this research direction, the special ensemble structure provided by the FPF
robust learning algorithm allowed us to develop two efficient robustness certifiers
that provide accurate robustness lower bound. In particular, the most efficient
certifier computes an accurate robustness lower bound in polynomial time.

9.2 Threat and Adversary’s Model

The threat model of the machine learning system considered in this work assumes
a binary classifier that is vulnerable to evasion attacks. In this scenario, the system

156 CHAPTER 9. FEATURE PARTITIONED FORESTS

is vulnerable to an attacker that tries to deceive an already trained binary classifier
h by maliciously perturbing a legitimate instance x to create an evasion instance
z . The vulnerability of the machine learning system allows an attacker to modify
at most ⌈|F|/2⌉ − 1 features with any intensity.

Concerning the adversary’s model, we adopted the definition proposed by
Kantchelian et al. in [92] and characterised it as follows: We denoted an at-
tacker with Ab, where b represents the budget (resources) available to modify a
legitimate instance to create an evasion attack. The attacker Ab generates evasion
instances under the constraints of the threat model. Furthermore, in this work,
we assumed that the cost of perturbing each feature f is cf = 1. Consequently, Ab

can modify a given instance x into an evasion instance z such that the L0-norm
of the perturbation is smaller than the attacker’s budget b, i.e., ∥x − z∥0 ≤ b,
and the budget b < |F|/2. Therefore, attacker Ab can perturb the instance x by
modifying at most b features without any intensity constraints.

Given the adversary’s model Ab, and an instance x ∈ X , we defined the adver-
sarial perturbation set Ab(x), i.e., the set of all the evasion instances the attacker
may generate starting from x , as follow:

Ab(x) = {z | z ∈ X ∧ ∥x − z∥0 ≤ b} . (9.1)

Additional adversary’s models have been investigated in the literature, includ-
ing adversary’s models based on generic Lp-norm constraints, as seen in the work
of Szegedy et al. [160], or adversary’s models based on rewriting rules, as proposed
by Calzavara et al. in [36]. We decided to restrict attention to L0-norm attacks
because of their simplicity and effectiveness. Indeed, a very small b is sufficient to
achieve successful attacks. Su et al. in [159] showed that with a one-pixel attack,
i.e., with b = 1, it is possible to fool a complex deep neural network as VGG16
[154] and decrease its accuracy to a poor 16%. This emphasises that such a simple
adversary’s model can still significantly impact the security and robustness of the
machine learning system.

9.3 Contribution 1: Feature-Partitioned Forest

In this section, we introduce the main contribution of this work. We provided
Feature-Partitioned Forest (FPF), an ensemble method designed to train forests of
binary decision trees that exhibit robustness against evasion attacks. Specifically,
the ensembles generated by FPF are robust by design to attackers capable of
perturbing, at most, b features of legitimate instances to induce prediction errors.
FPF guarantees such robustness by train forests where the majority of the trees
remain not affected by those evasion attacks.

9.3. CONTRIBUTION 1: FEATURE-PARTITIONED FOREST 157

9.3.1 Robust Feature Partitioning

In this section, we provide our definition of robust feature partitioning in adver-
sarial scenarios. However, we first need to clarify what feature partitioning is.

Definition 7 (Feature Partitioning). Given the feature set F , the partition set
P = {P1, . . . , Pn} is a partition of F , if the following property holds:⋃

Pi∈P

Pi = F ∧ ∀Pi,Pj∈P Pi ∩ Pj = ∅.

In other words, P is a partition of the feature set F if all sets P ∈ P are
disjoint and their union returns the entire feature set. Note that the number of
set n can be any number in the interval [1, |F|].

Through Definition 7, we can define a robust feature partitioning as follows:

Definition 8 (Robust Feature Partitioning). Given a partition P of the feature
set F , an attacker Ab, and the set of attacked features B, P is a robust partition
of F if the majority of its sets do not contain the attacked features in B, i.e., if
the following property holds:∑

P∈P

1[B ∩ P ̸= ∅] < |P|
2

, ∀B ⊆ F , |B| ≤ b.

In other words, the majority of the sets in P do not contain any feature in B,
i.e., the features perturbed by Ab, for whatever choice of B.

When |B| ≤ b, it is straightforward to show that this property is surely satisfied
if |P| ≥ 2b+ 1. In the worst case, at most b distinct subsets of P overlap with B,
leaving the remaining b+1 subset of P not affected. Hereinafter, we consider only
robust feature partitions P where |P| = 2b+ 1.

9.3.2 Robust Forest Ensembling

Let’s consider a forest F that, given an attacker Ab, is built by exploiting a robust
feature partition P as follows.

Let D be a training set and P a robust partition of its feature set. Given
P ∈ P , we call πP (D) the projection of D on the set P , i.e., the dataset obtained
from D by discarding those features not included in P . Given a robust feature
partition P , it is thus possible to build a robust forest by training 2b+ 1 feature-
independent trees on the 2b+1 projections πPi

(D). We denote by FP such robust
forest, having a number of trees equal to |FP | = |P| = 2b+ 1.

From above, we can formally define a Robust Forest, robust to evasion attacks
generated by Ab, as follows:

158 CHAPTER 9. FEATURE PARTITIONED FORESTS

Definition 9 (Robust Forest). Given an attacker Ab, a forest F is a robust forest
if the majority of its trees are not affected by Ab for any of its attacks:∑

t∈FP

(1[t(x) = t(z)]) >
|FP |
2

, ∀x ∈ X , ∀z ∈ Ab(x).

It is straightforward to show that in FP at most b of its 2b + 1 trees can be
affected by the attacker, and thus the robustness property is guaranteed by design.

Note that, in the best case scenario where each t ∈ FP is perfectly accurate,
the above robustness property ensures that, in the presence of attacks, only a mi-
nority of trees provide an incorrect prediction, and therefore, the forest is perfectly
accurate even under attack. Clearly, this scenario is unlikely to happen in reality;
therefore, in the next section, we discuss how to increase the accuracy of FP .

Finally, the definition of robust forest given above holds for any instances x ∈ X
and not only for the instances in the given dataset; consequently, this definition is
dataset independent. Moreover, the above definition and training strategy trivially
generalises to any base-learning algorithm besides tree-based classifiers.

9.3.3 Improve Model Accuracy and Robustness

The Definition 9 guarantees that the majority of trees in a robust forest are not
affected by an attack. However, it does not provide any guarantees of the robust-
ness computed with Equation 8.3 since it also depends on the accuracy of each
tree in the forest. In fact, in a FPF forest, the more accurate the trees t ∈ FP , the
more likely the forest FP is robust.

The accuracy of single trees in a forest FP strongly depends on the feature
partition P . The larger the set P , the smaller the number of features each tree
is trained on. To increase the accuracy of a robust forest FP , we equi-partition
F across P so as to have |P | ≥ ⌊|F|/(2b+ 1)⌋ for all P ∈ P . Clearly, as the
attacker’s budget b increases, we need to partition F into a greater number of
subsets. However, to generate accurate trees, we also require the dataset to have
a large number of high-quality features. Note that this is true for every learning
algorithm: if the attacker can perturb up to b features, it is necessary to have
more than b high-quality features to train an accurate model. In addition, a specific
partition P may only be sub-optimal as there may be multiple ways of partitioning
F so as to achieve feature subsets that provide trees with higher predictive power.

In light of these observations, we define the final Feature-Partitioned Forest
algorithm to train robust and accurate forests. To enhance accuracy and, conse-
quently, the robustness of the forests, we choose to exploit the set of possible robust
partitions of F to train multiple distinct robust forests FP , for each partition P ,
and then combine them into a single robust forest.

9.3. CONTRIBUTION 1: FEATURE-PARTITIONED FOREST 159

Algorithm 5 Feature-Partitioned Forest Training

1: function FeaturePartitionedForest(D, r, Ab)
2: Input
3: D : training set
4: r : number of robust training rounds
5: Ab : adversary’s model

6: Output
7: F : final ensemble ▷ A set of robust forests

8: F ← ∅
9: b← Ab

10: k ← 2b+ 1
11: for i = 1 to r do
12: repeat
13: Pi ← RandomPartition(F , k) ▷ Partition F into k disjoint set
14: FPi

← ∅
15: for Pj ∈ Pi do
16: tij ← DecisionTree(πPj

(D))
17: FPi

← FPi
∪ {tij}

18: until AcceptCondition(FPi
)

19: F ← F ∪ FPi

20: return F

The details of the final FPF learning algorithm are outlined in Algorithm 5.
FPF iterates over a given number r of robust training rounds, where r is a hyper-
parameter of the algorithm. During each round i ∈ [1, r], the algorithm generates
a random robust partition Pi of the feature set F . Thus, according to Definition
8, at each round i, the feature set F is randomly and evenly split into 2b + 1
disjoint subsets (i.e., |Pi| = 2b + 1), and a new decision tree is trained on each of
the dataset projections πP i

j
(D) for every feature subset P i

j ∈ Pi. Then, resulting

2b + 1 trees are ensembled into a robust forest FPi
. Finally, after r iterations, all

the robust forests FPi
are ensembled into an even more accurate and robust forest

FP = FP1 ∪ · · · ∪ FPr .
Note that the prediction of a FPF forest consists of the majority voting over

the predicted classes returned by the trees in the ensemble.
The function AcceptCondition used in Algorithm 5 is used as an accept

condition to filter out those FPi
that would not strengthen the final ensemble. For

instance, it might be the case that some partitions in Pi do not contain sufficiently
predictive features to train accurate trees. In this work, we use a simple accep-

160 CHAPTER 9. FEATURE PARTITIONED FORESTS

tance criterion. A forest FPi
is accepted if training accuracy exceeds the dataset’s

majority class percentage of the most frequent class. If the accept condition is
satisfied, FPi

is included in FP , otherwise a new robust partition Pi for iteration i
is generated.

It is crucial to note that, through the ensembling of robust forests, the resulting
forest remains robust by construction. In other words, the majority of the trees
within it are not affected by the evasion attacks.

Proposition 1 (Robustness of FPF). The forest FP trained by the FPF learning
algorithm is robust against an attacker Ab, if the majority of its trees are not
affected by Ab for any of its attacks.

The proof of the above proposition is trivial. We recall that during each robust
training round i, FPF trains a set of 2b + 1 trees, where at most b trees can be
affected by Ab. After r rounds, FPF has built a forest of r(2b+1) trees, of which at
most rb can be affected by Ab, while the remaining r(b+ 1) trees are not affected;
the majority of the trees are not affected by Ab.

Furthermore, it’s important to recall that the model’s robustness is closely
tied to the accuracy of trees not affected by the attack. In fact, an attacker can
exploit a non-attacked tree that is also inaccurate to enhance the strength of the
attack. The use of multiple robust training rounds r to reinforce the robustness
of the forest against evasion attacks generated by Ab is effective for the following
proposition.

Proposition 2 (Inaccuracy Tolerance). Given a FPF robust forest FP , with r
robust training rounds, trained to be robust to an attacker Ab. The forest FP is
robust to any possible attack generated by Ab if at most ξ percentage of the trees
in FP are inaccurate, with ξ defined as follows:

ξ =
⌈r/2⌉ − 1

r(2b+ 1)

As a result, the larger the value of r, the higher the upper bound on the number
of trees that can be inaccurate. This leads to a higher probability that at least
the majority of the forest predicts the correct class.

9.4 Contribution 2: Robustness Certifiers

Evaluating the robustness of a model in the presence of an attacker is a difficult
and computationally expensive task. This is due to the possibly large size of Ab(x)
and the number of interactions among trees in a forest. Below, we first discuss an

9.4. CONTRIBUTION 2: ROBUSTNESS CERTIFIERS 161

expensive brute-force strategy for robustness verification of any forest of binary-
clarification trees. Then, we show for FPF forest how the existence of an attack
over an instance can be reduced to the existence of a solution for the partial set
coverage problem [72]. We exploit this result to design a strategy to reduce the
cost of the brute-force strategy and provide two efficient lower-bound robustness
certifications of FPF forests.

Before going into the definition of the brute-force robustness verifier and the
efficient robustness verifiers, we recall the definition of the decision tree provided
in Section 2.1.2 since the algorithm proposed in this section deeply relies on the
tree structure.

Given a tree-based ensemble F , each tree t ∈ F can be inductively defined as
follows: t is either a leaf λ(ŷ) for some label ŷ ∈ Y , or an internal node σ(f, v, tl, tr)
(a.k.a, split), where f ∈ {1, . . . , d} identifies a feature in F , v ∈ R is the threshold
for the feature f in that node, and tl, tr are left/right decision trees. At test time,
an instance x traverses each tree t ∈ F until it reaches a leaf λ(ŷ), which returns the
prediction ŷ, denoted by t(x) = ŷ. Specifically, for each internal node σ(f, v, tl, tr),
x falls into the left tree tl if x

(f) ≤ v, and into the right tree tr otherwise. Given
a forest F and an instance x , the forest prediction F (x) is defined as the most
frequent predicted class ŷ = t(x) by each t ∈ F , for x .

9.4.1 Brute Force Robustness Verifier

Given an instance x ∈ X , the brute-force robustness verification of x for the forest
F consists of finding an evasion attack z ∈ Ab(x), such that F (x) ̸= F (z). With
such an algorithm, we can exactly compute the robustness defined in Equation 8.3
of a tree ensemble F over a given set of instances D.

Unfortunately, the size of Ab(x) is infinite, so using a naive brute-force algo-
rithm to generate all the possible evasion instances is infeasible. However, we can
exploit the inner structure of the decision trees to limit the size of the adversarial
perturbation set Abx by considering only the attacks that are relevant for the given
forest F , i.e., those attacks that can invert the outcome of a test in some internal
nodes of trees in F . We denoted this set of relevant attacks, as Ab(x |F).

To understand how Ab(x |F) is generated, recall that nodes in a tree are in the
form x(f) ≤ v for some threshold v. Indeed, the thresholds used in the tree nodes
induce a discretisation of the input space X that can be exploited for an efficient
brute-force algorithm. For any given feature f ∈ F , we define with Vf the set of
relevant thresholds as follows:

Vf = {v | ∃σ(f, v, tl, tr) ∈ t, t ∈ F} ∪ {∞}
The set Vf includes all the thresholds that are associated with f in any node

σ(f, v, tl, tr) of any tree in F , plus the infinity value that allows the algorithm also

162 CHAPTER 9. FEATURE PARTITIONED FORESTS

to include the attack that traverses the right branch of the node with the largest
threshold.

An attacker Ab can perturb any subset of features B ⊆ F such that |B| ≤ b, and
therefore the set of relevant perturbations the attacker may operate is described by
the Cartesian product Vf1 × . . .× Vfb , with fi ∈ B. We denote by Ab(x |F,B) the
set of relevant attacks on the given set of features B, i.e., each perturbed vector
z ∈ Ab(x |F,B) satisfies the following:

z(f) =

{
x(f) if f ̸∈ B,

v ∈ Vf if f ∈ B.

In conclusion, the set of relevant attacks is:

Ab(x |F) =
⋃

∀B⊆F ,
|B|=b

Ab(x |F,B)

The discretisation introduced by the thresholds of the trees allows us to gen-
erate the exact finite set of possible attack Ab(x |F) without loss of generality.
Through Ab(x |F), we can efficiently and exactly verify the robustness of F on an
instance x . Hereinafter, we refer to this efficient robustness verification algorithm
as BF.

Given a set of instances D, with BF, it is possible to efficiently compute the
exact robustness as defined in Equation 8.3. To make the computation of the
robustness even faster, we can focus the attention only on the correctly predicted
instances since the wrongly predicted instances are not robust by definition. Thus
we define the set of instances for which exists at least a successful evasion attack
as D̂ = {(x , y) ∈ D\D | ∃z ∈ Ab(x |F), y ̸= F (z)}, where D is the set of instances
misclassified by F in absence of attack.

This brute-force approach is still very expensive due to three factors: i) as
b increases, the number of possible feature combinations B ⊂ F with |B| = b
increases; ii) as the number of trees and nodes grows, the number of threshold
values associated with each feature increases; iii) for each perturbed instance z ,
the prediction F (z) must be computed by traversing each trees of the forest.

9.4.2 Feature-Partitioned Forest Robustness Certifier

Even though the BF algorithm allows the reduction of the infinite adversarial
perturbation set Ab(x) into the finite relevant attacks set Ab(x |F), it doesn’t
change the fact that computing all relevant attacks is still infeasible, as outlined in
the three points stated previously. Consequently, another significant contribution

9.4. CONTRIBUTION 2: ROBUSTNESS CERTIFIERS 163

of this work is the development of two robustness certifiers that efficiently provide
an accurate lower bound of the robustness of FPF forests.

We now introduce some simplifying worst-case assumptions and then show
that an effective attack exists if it can be reduced to a solution for the partial set
coverage problem. First, we assume that if a tree in F provides a wrong prediction
before the attack, then its prediction will be incorrect also after the attack. Second,
we assume that if a tree uses a feature f for its prediction over x , then attacking
f causes the tree to generate a wrong prediction.

Note that these assumptions are pessimistic from the point of view of a de-
fender. Indeed, modifying a feature f does not necessarily flip the test performed
at every node of the tree that uses that feature, and even if it was the case, tests
performed over other features may suffice to avoid a wrong prediction.

Given an instance (x , y) ∈ D and a forest F , let C be the set of correct trees
t ∈ F that correctly classify x , i.e., C = {t ∈ F | t(x) = y}. Let C = F \ C
be the set of all trees providing a wrong prediction over x . The attacker’s goal
is to force a sufficient number of trees to misclassify x such that the majority of
trees are incorrect. The minimum number of trees the attacker must fool is δ such
that |C| + δ = ⌈|F |/2⌉. By Proposition 2, it turns out that in a robust forest of
r(2b+ 1) trees, trained with FPF, where the attacker can affect at most rb trees,
it is impossible for the attacker to fool the forest if |C| < ⌈r/2⌉. This means that
a forest can be robust even if some of its trees are not correct in the absence of an
attacker.

Let Sf ⊆ C be the set of all the correct trees that use feature f and let
Ξ = {Sf}f∈F be the collection of all Sf . In order for Ab to successfully attack F
over x , there must exist a subset S∗ ⊆ Ξ, with |S∗| ≤ b since Ab can perturb a
maximum of b features, such that |C| + |⋃Sf∈S∗ Sf | ≥ ⌈|F |/2⌉, or, equivalently,
such that |⋃Sf∈S∗ Sf | ≥ δ with δ = ⌈|F |/2⌉−|C|. The thoughtful reader has surely
recognised that this formulation of our problem is nothing else than an instance
of the partial set coverage problem, where given the set of correct trees C and the
collection Ξ ⊆ 2C , to find a successful attack, the attacker has to select up to b
sets in Ξ that cover at least δ trees.

Before attacking the partial set coverage problem, we make a few improvements
to provide a stricter definition of sets Sf in relation to our scenario. First, we note
that a tree may include a feature f in some of its nodes, but these nodes may
never be traversed during the evaluation of an instance x . Therefore, we say that
a correct tree t belongs to Sf with respect to an instance x only if the traversal
path of x in t includes a node with a test on feature f . This significantly reduces
the size of each Sf .

Then, among the nodes along the traversal path of instance x before the attack,
we can further distinguish between nodes where the test x(f) ≤ v is true and nodes

164 CHAPTER 9. FEATURE PARTITIONED FORESTS

where the test is false. In the former case, the attacker must increase the value of
x(f) to affect the traversal path, while in the latter case, the attacker must decrease
x(f). Clearly, these two attacks cannot coexist.

Therefore, we define sets S+
f and S−

f as follows. Given a correct tree t ∈ C, we

include t in S+
f if the traversal path of x in t includes a node with a test x(f) ≤ v

on feature f and this test gives a true outcome. Otherwise, if the outcome of this
test turns out to be false, we include t in S−

f . The distinction between S+
f and

S−
f allows for more accurate modelling of when an attack can actually affect the

final prediction. This also reduces the size of sets in Ξ and decreases the risk of
overestimating the effect of an attack. We can finally conclude the relation with
the partial set cover problem as follows.

Proposition 3 (Partial set coverage as a necessary condition for effective attacks).
Given (x , y) ∈ D, where F (x) = y, a necessary condition for the existence of a
successful attack z ∈ Ab(x) such that F (z) ̸= y, is that there exists a solution for
the partial set coverage problem, stated as follows:

Given the set system (C,Ξ), where C is the finite set of correct trees
for x , where Ξ ⊆ 2C with Ξ = {S+

f }f∈F ∪ {S−
f }f∈F , and given integer

b and a constant δ = ⌈|F |/2⌉ − |C|, the goal is to find a sub-collection
S∗ ⊆ Ξ, where |⋃S∈S∗ S| ≥ δ, with the constraints that |S∗| ≤ b and,
∀f ∈ F , if S+

f ∈ S∗ (S−
f ∈ S∗) then S−

f ̸∈ S∗ (S+
f ̸∈ S∗).

Proof of the correctness of Proposition 3. We show that if there exists z ∈ Ab(x)
such that F (z) ̸= y, then there exists S∗ ⊆ Ξ, where |⋃S∈S∗ S| ≥ δ, |S∗| ≤ b, and
S+
f and S−

f are mutually exclusive in S∗. Given z ∈ Ab(x), we say that for any

attacked feature f either the corresponding set S+
f belongs to S∗ if z(f) − x(f) >

0 (corrupted by increment) or S−
f belongs to S∗ if z(f) − x(f) < 0 (corrupted

by decrement). Clearly, it holds that |S∗| ≤ b, and the sets S+
f and S−

f are

mutually exclusive in S∗. Let C ′ be the set of (formerly correct) trees corrupted
by the successful attack z ; then it holds that |C ′| ≥ δ. By construction, any
tree t ∈ C ′ belongs to either S+

f or S−
f included in S∗. Therefore, it holds that

|C ′| ≤ |⋃S∈S∗ S|, which implies |⋃S∈S∗ S| ≥ δ.

Note that Proposition 3 states that the existence of a solution S∗ for our partial
set cover problem is only a necessary (not sufficient) condition for the attack. Thus,
if S∗ exists, we cannot say that F can be fooled for sure, as the attacker might
modify all the features identified by the cover without being able to affect the final
forest prediction. However, we know that if a solution S∗ does not exist, then F
is robust on the given instance x .

In the following, we use this method to compute an upper bound of the size of
D̂, i.e., the set of instances in the set D for which there exist a successful evasion

9.4. CONTRIBUTION 2: ROBUSTNESS CERTIFIERS 165

attack. On the one hand, this method allows us to efficiently compute a lower
bound of the exact robustness R(Ab). On the other hand, it makes it possible to
speed up the exact computation of R(Ab) by employing the BF algorithm only
for those instances for which a sufficiently large set cover exists, i.e., a successful
attack may exist.

9.4.2.1 Fast Robustness Lower Bound Certifier

The method discussed in this section, named Fast Robustness Lower Bound (FLB),
computes an overestimate of the size of the partial set cover S∗ ⊆ Ξ, for the
problem stated in Proposition 3.

Consider the b sets in Ξ that provide the largest set cover. Trivially, the
cardinality of the union of the b sets within S∗ is smaller or equal to the sum of
the cardinalities of the b largest sets in Ξ (inclusion-exclusion principle). Due to
this approximation, it is possible to run FLB in polynomial time. Furthermore,
we improve this trivial upper bound by considering that the two sets S+

f and S−
f

cannot be included together in a potential cover.
We thus define the fast lower bound set SFLB to be the set of the b largest

sets in Ξ after enforcing the constraint that for a given feature f only the largest
between S+

f and S−
f is considered.

We can conclude that if
∑

S∈SFLB
|S| < δ, then a suitable partial cover cannot

exist and therefore the forest F cannot be attacked on x .
Therefore, we define the set D̂FLB of attackable instances according to the fast

lower bound method as follows. For each correctly classified instance (x , y) ∈
D, we build the partial coverage problem according to Proposition 3, and iff∑

S∈SFLB
|S| ≥ δ, then we include the instance (x , y) in D̂FLB. Since it holds

that |D̂FLB| ≥ |D̂|, we define the robustness computed with FLB as follows:

R(Ab)FLB = 1− |D|+ |D̂FLB|
|D| ≤ R(Ab).

9.4.2.2 Exhaustive Robustness Lower Bound Certifier

In order to improve over FLB, we also consider a more expensive option named
Exhaustive Robustness Lower Bound (ELB), where all the possible covers are con-
sidered, still respecting the constraint that any S+

f and S−
f are mutually exclusive.

We evaluate all the possible covers S† ⊂ 2Ξ, |S†| ≤ b, and we call exhaustive lower
bound cover, denoted with SELB, the first cover found such that |⋃S∈SELB

S| ≥ δ.
If no exhaustive lower bound cover SELB can be found, then F is robust on the
given instance x .

166 CHAPTER 9. FEATURE PARTITIONED FORESTS

By applying the same procedure to every correctly classified instance (x , y) ∈
D, we identify the set of instances D̂ELB for which there exists an exhaustive lower
bound cover SELB that solves the problem in Proposition 3.

Note that |D̂| ≤ |D̂ELB| ≤ |D̂FLB|; thus we use this method to compute another
lower bound of the robustness of F on a given set D as follows:

R(Ab)ELB = 1− |D|+ |D̂ELB|
|D| ≤ R(Ab),

where the following relationship trivially holds:

R(Ab)FLB ≤ R(Ab)ELB ≤ R(Ab).

This exhaustive lower bound cover search incurs into the exponential cost of
enumerating the possible covers in 2Ξ, but it improves over the brute-force attack,
thanks to the cover-based formulation, by ignoring the relevant threshold values
Vf each feature can be attacked. Moreover, it is possible to make ELB even faster

by applying it only on the instances in D̂FLB, i.e., the instances for which FLB
found a set cover.

We recall that while it is true that |D̂| ≤ |D̂ELB| ≤ |D̂FLB|, we cannot claim

that D̂ ⊆ D̂ELB ⊆ D̂FLB. The above bounds can prove the non-existence of an
actual cover, but they may not be used to find a successful attack strategy.

9.4.2.3 Non-Binary Classification Robustness Certifier

Even if this work is focused on binary classification tasks, we highlight that the
proposed methodology can be easily generalised to a multi-class scenario, and we
sketch below a basic certification methodology.

The algorithms proposed so far aim at certifying the impossibility of the at-
tacker of modifying a number of correct trees δ such that δ ≥ ⌈|F |/2⌉− |C|, where
C is the set of trees wrongly classifying the given instance. In regard to a multi-
class classification problem, given classes Y with |Y| > 2, it is possible to verify
robustness by running |Y| − 1 certifications analogous to the binary case.

Let’s denote with Cc the set of trees that, in the absence of attacks, classify a
given instance (x , y) ∈ D as belonging to class c, with c ∈ Y ; then let Cy be the set
of trees predicting the correct label y. For a given class c ∈ Y , the attacker aims
at attacking the trees in

⋃
i ̸=c Ci so as to make c the new majority class. The best-

case scenario from the point of the attacker is given by modifying the predictions
of the trees in Cy, as in this case, it is sufficient to attack δ = ⌈(|Cy| − |Cc|)/2⌉
trees. If the attacker is not able to alter at least δ trees of the forest, then no
successful attack is possible.

9.5. EXPERIMENTAL SETUP 167

To this end, we can exploit any of the set-cover base techniques proposed so
far to verify the absence of any cover of size at least δ among the trees

⋃
i ̸=cCi.

Such verification is to be repeated for each c ∈ Y .

9.4.3 Cascade Robustness Verifier

Above, we presented two algorithms, FLB and ELB, that efficiently find an over-
approximation of a cover of attacked trees, which allows us to estimate the upper
bound of the most harmful attack. The two strategies have different costs: FLB
requires sorting the candidate sets of the cover, while ELB performs an exhaustive
search of all the possible subsets of Ξ. However, Both methods are much cheaper
than the brute-force algorithm BF.

When the lower-bound information is not considered sufficient, in order to
compute the exact robustness R(Ab), we exploit the following Cascading strategy.
Given an instance x and an attacker Ab, we build the collection of sets of trees
Ξ = {S+

f }f∈F ∪ {S−
f }f∈F and proceed as follows:

1. compute SFLB ⊆ Ξ: if
∑

S∈SFLB
|S| < δ, then no sufficiently large set cover

exists, and therefore the instance x cannot be attacked; otherwise

2. search for a exhaustive lower bound cover SELB ⊆ Ξ: if there is no SELB such
that |⋃S∈SELB

S| ≥ δ, then the instance x cannot be attacked; otherwise

3. use the BF algorithm to check the existence of a successful attack on x .

In the experimental part of this work, we show how the above cascading strategy
is able to strongly reduce the number of instances in a given dataset D for which
the brute-force approach is required.

9.5 Experimental Setup

In the experimental part of this work, we verify whether the robustness by con-
struction theoretically guaranteed by the FPF learning algorithm translates into
empirically higher robustness in an adversarial scenario compared to the base-
lines. To achieve this, we used three publicly available datasets: Wine, Breast
Cancer D, and Spam Base.

Table 9.1 provides the main characteristics of the datasets, including the num-
ber of features, the number of top relevant features measured as those contributing
to 90% of the feature importance in a Random Forest, and the majority class per-
centage. Note that the Wine dataset is provided with three classes; however, to
use this dataset, we binarise it by merging the cultivar classes 1 and 2 into one
larger class.

168 CHAPTER 9. FEATURE PARTITIONED FORESTS

Table 9.1: Datasets properties.

Dataset #features #top feat. #instances %maj. class

Wine 13 7 178 73.0%
Breast Cancer D 30 15 569 62.7%
Spam Base 57 26 4,601 60.6%

MNIST 0 vs. 1 784 54 14,780 53.3%
MNIST 1 vs. 7 784 79 15,170 51.9%
MNIST 5 vs. 6 784 173 13,189 52.1%

In this section, we also extensively analyse the performance of the certification
algorithms FLB and ELB in terms of efficiency and accuracy. For these analyses,
we also use the MNIST dataset. The MNIST dataset contains images of digits
ranging from 0 to 9 for a total of 10 classes. To use this dataset in binary classifi-
cation, we selected three pairs of visually similar classes, i.e., classes in which the
attacker can modify a few pixels to transform one digit into another. The datasets
we created are the following: MNIST 0 vs. 1, MNIST 1 vs. 7, and MNIST 5
vs. 6.

9.5.1 Baselines and Implementation

In the experimental phase, we compare our proposed algorithm, FPF, against three
tree-based ensemble competitors: Random Forest, Random Subspace Method,
and Robust Tree. The algorithms FPF, Random Forest, and Random Subspace
Method were implemented using the open-source Scikit-learn library [24]. For
Robust Tree, we used the implementation provided by Calzavara et al. [36], and
the code can be found on GitHub1. Finally, the code for FPF with its FLB and
ELB certificates, and the efficient brute-force algorithm BF, is also available on
GitHub2.

Below, we provide details of the implemented algorithms.

• Random Forest (RF): The RF algorithm defined by Breiman [20] is not
designed to be robust to evasion attacks; however, it is known to have some
good level of robustness thanks to the ensembling of several decision trees.
As in the original algorithm, each tree is trained on a bootstrap sample of
the dataset and with feature sampling of size

√
|F| at each node.

1https://github.com/FedericoMarcuzzi/TREANT
2https://github.com/FedericoMarcuzzi/Feature-Partitioning-for-Robust-Tree-Ensembles

https://github.com/FedericoMarcuzzi/TREANT
https://github.com/FedericoMarcuzzi/Feature-Partitioning-for-Robust-Tree-Ensembles

9.6. MAIN RESULTS 169

• Random Subspace method (RSM): The RSM algorithm proposed by Tin
Kam [81], which was successfully exploited in the adversarial setting by Big-
gio et al. in [13]. In this case, each tree is trained on a projection of the
original dataset based on a subset (subspace) of the feature set. RSM has a
hyperparameter p ∈ [0, 1], which constrains the size of the subset of features
used for each tree learning to ⌈p|F|⌉.

• Robust Tree (RT): The RT algorithm, proposed by Chen et al. in [45], trains
individual decision trees to be robust against evasion attacks by optimising
the performance under attack. We created a robust ensemble by training
each individual tree with the algorithm proposed in the original work and
by ensembling them together with a majority voting prediction.

To untie the model’s resistance from the attacker’s strength, hereinafter, we
refer to b as the strengthening parameter exploited by FPF and RT at training
time and to k as the attacker’s budget used to generate the evasion attacks.

The ensemble size significantly influences the final robustness of the strategies.
We conduct a fair comparison of the different learning strategies by allowing each
method to grow approximately 300 trees, a configuration experimentally observed
to be optimal.

Each dataset is divided into train, validation, and test sets according to a
60%-20%-20% scheme with a stratified sampling strategy in order to maintain the
same distribution of classes in each set. For each learning algorithm, we fine-tune
their hyperparameters on the validation set by optimising for robustness R(Ak).
Specifically, we fine-tune the maximum number of leaves l̂, selecting from the set
{4, 8, 16, 32} for all algorithms. Regarding FPF, we fine-tune the hyperparameter
b selecting from the set [1, 5], while the number of rounds r is constrained based
on b to ensure no more than 300 trees in the ensemble, i.e., r = ⌊300/(2b + 1)⌋.
Finally, the RSM algorithm requires a sampling parameter p to constrain the size
of the subspaces, and we fine-tune it among the values p ∈ {0.1, 0.2, 0.4, 0.6}.
We perform model selection in the validation set to find the best model for each
attacker Ak, and we report the results computed on the test set.

9.6 Main Results

In this section, we summarise the results of the experiments conducted to address
the following questions: Is the FPF learning algorithm capable of training robust
tree-based ensembles compared to competitors? How accurate are the proposed
robustness lower bounds FLB and ELB? How efficient is the Cascading strategy
for exact robustness computation compared to the brute-force algorithm BF?

170 CHAPTER 9. FEATURE PARTITIONED FORESTS

Table 9.2: Methods performance in terms of accuracy (percentage) ACC and ro-
bustness (percentage) R(Ak) on Wine dataset. The highest robustness R(Ak) for
each k is marked with bold.

model
hyperparameters performance

b r p l̂ |F | ACC k R(Ak) ∆FPF

RF
8 300 94.4 1 83.3 -2.8
4 300 100.0 2 38.9 -36.1
4 300 100.0 3 0.0 -61.1

RSM
0.2 8 300 94.4 1 83.3 -2.8
0.2 4 300 97.2 2 72.2 -2.8
0.2 8 300 94.4 3 44.4 -16.7

RT
1 8 300 73.8 1 73.8 -12.3
2 8 300 73.8 2 73.8 -1.2
3 8 300 73.8 3 73.8 +12.7

FPF
2 60 8 300 97.2 1 86.1
5 27 8 297 88.9 2 75.0
5 27 8 297 88.9 3 61.1

The section is divided into two parts. The first part focuses on comparing the
robustness and accuracy of the models produced by each algorithm. The second
part concentrates on the accuracy of the certificates in computing the lower bound
of the robustness of the forests trained with FPF and the efficiency introduced by
the certificates for computing the exact robustness with the Cascading strategy.

9.6.1 Model Robustness

We measured the robustness of the models against an attacker Ak with three
different values of the budget k ∈ {1, 2, 3}. Note that the robustness can be
seen as the accuracy of the model under attack. So, for the sake of simplicity
hereinafter, we will use the terms accuracy and robustness interchangeably when
the model is under attack.

In tables 9.2, 9.3, and 9.4, are summarised the results for each dataset. The
results are computed on the best models selected through model selection on the
validation set, and the best hyperparameters are reported for each model.

Each table provides the exact robustness R(Ak) calculated as in Equation 8.3.
We used the exact brute-force algorithm BF defined in Section 9.4.1 to generate all
the attacks. Alongside the robustness, there is the accuracy ACC to compare the

9.6. MAIN RESULTS 171

Table 9.3: Methods performance in terms of accuracy (percentage) ACC and ro-
bustness (percentage) R(Ak) on Breast Cancer D dataset. The highest robust-
ness R(Ak) for each k is marked with bold.

model
hyperparameters performance

b r p l̂ |F | ACC k R(Ak) ∆FPF

RF
4 300 93.0 1 87.7 -3.5
8 300 94.7 2 84.2 -0.9
4 300 93.0 3 61.4 -20.2

RSM
0.2 16 300 95.6 1 91.2 0.0
0.2 16 300 95.6 2 83.3 -1.8
0.2 16 300 95.6 3 65.8 -15.8

RT
1 4 300 92.3 1 56.2 -35.0
1 4 300 92.3 2 50.5 -34.6
1 4 300 92.3 3 45.4 -36.2

FPF
3 42 8 300 93.9 1 91.2
4 33 4 297 93.0 2 85.1
5 27 8 300 93.0 3 81.6

Table 9.4: Methods performance in terms of accuracy (percentage) ACC and ro-
bustness (percentage) R(Ak) on Spam Base dataset. The highest robustness
R(Ak) for each k is marked with bold.

model
hyperparameters performance

b r p l̂ |F | ACC k R(Ak) ∆FPF

RF
8 300 92.3 1 76.6 -7.1
4 300 90.2 2 44.9 -33.3

RSM
0.2 16 300 90.9 1 83.7 0.0
0.2 16 300 90.9 2 73.6 -4.6

RT
3 8 300 71.5 1 43.3 -42.2
3 8 300 71.5 2 20.1 -65.5

FPF
2 60 16 300 91.8 1 83.7
4 33 16 297 86.6 2 78.2

172 CHAPTER 9. FEATURE PARTITIONED FORESTS

models’ performance in the absence of attacks. Finally, the rightmost column in
each table reports the difference in robustness (i.e., ∆FPF) between a FPF forest
and a competitor under the same attack (i.e., the same value of k). Note that for
the Spam Base dataset, we limit the analysis to a maximum of k = 2, i.e., at most
two attacked features. The reason for that is the prohibitive cost of computing the
adversarial perturbation set A3(x) for each instance of the test set.

In all datasets, Random Forest performs best or second best in the absence of
attacks, providing the highest accuracy. Under attack, the accuracy (robustness)
of Random Forest drops significantly. The perturbation of a single feature is
enough to force the model to lose up to 15% of accuracy across all datasets. When
attacking three features, the accuracy drops to zero for Wine and to about 60%
for Breast Cancer D. As previously discussed, the L0-norm attacks can be
successful even by modifying a few features. Consequently, it is easy to fool a very
accurate random forest model which is not adversarially trained.

The RSM is the other learning algorithm that provides the most accurate model
in the absence of attacks. The model trained with RSM is overall much more
robust than Random Forest in the presence of attacks, suggesting that training
each ensemble’s tree on a different dataset projection is advantageous in adversarial
scenarios. However, when attacking two features, RSM also exhibits a drop in
accuracy up to 27%, with the most significant decrease in the Spam Base dataset.
When attacking three features, the accuracy of the RSM models drops below 45%
on Wine and 66% on Breast Cancer D.

The results obtained by RT models show how this robust learning strategy
does not perform well in the case of L0-norm attacks. This can be explained by
observing how the learning algorithm trains a robust model. During the training
phase, the model has to choose the feature-threshold pair (f, v), which maximises
the minimum accuracy under attack, i.e., the robustness. However, an attacker like
Ak constrained by the L0-norm and a budget k can always modify any combination
of k features as much as it wants and, therefore, can always cross the algorithm’s
chosen threshold. Consequently, the evasion attacks generated by Ak make it
extremely difficult for the training algorithm to choose the best pair since pairs
with the same feature generate the same information gain under attack. The
difficulty of the algorithm in dealing with this type of attack can be seen from
the Wine dataset, where the algorithm always returns the same accuracy and
robustness, and these exactly coincide with the majority class percentage of the
test set. The reason behind that lies in the fact that during the training phase,
the RT algorithm funds more advantages for maximising the robustness always to
return the majority class rather than learning a more accurate tree.

Finally, looking at the results obtained by the models trained by FPF learning
algorithm, we can observe that it provides the best robustness in the majority

9.6. MAIN RESULTS 173

Table 9.5: Robustness lower bound analysis on Breast Cancer D for a FPF
forest with |F | ≈ 300 and maximum number of leaves l̂ = 8.

R(A1)algo R(A2)algo R(A3)algo
hyperparameter b BF ELB FLB BF ELB FLB BF ELB FLB

1 91.2 88.6 88.6 76.3 0.0 0.0 18.4 0.0 0.0
2 91.2 90.4 90.4 84.2 83.3 82.5 64.9 0.0 0.0
3 91.2 91.2 91.2 86.0 85.1 84.2 78.1 76.3 73.7
4 90.4 90.4 90.4 86.8 86.8 86.8 79.8 79.8 79.8
5 89.5 89.5 89.5 86.8 86.8 86.8 81.6 81.6 80.7

of the cases. We highlight that the best defensive b found is always larger than
the attacker’s budget k, meaning that increasing the number of feature partitions
provides better robustness than exactly optimising the attacker’s strength. The
scenario where the attacker has a budget of k = 3 is particularly interesting. The
FPF models have up to 20%, 35% and 60% higher robustness compared to the
RSM, RT, and RF models, respectively.

Furthermore, the results on the Wine dataset highlight the ability of FPF to
guarantee greater robustness even with few features in the dataset. As reported in
Table 9.1, Wine has 13 features, of which only 7 are relevant. Attacks executed
with budgets k equal to 1, 2, and 3 compromise the 7.7%, 15.4%, and 23.1% of the
features of the dataset, respectively, and 14.3%, 28.6%, and 42.8% if we consider
only the relevant features. For each budget value, FPF models showed a greater
(or equal) robustness than the competitors.

From these results, we conclude that FPF outperforms the competitors, espe-
cially when considering stronger attackers.

9.6.2 Robustness Certifier

In this section, we analyse in detail the accuracy of the FLB and ELB certifiers
and the efficiency of the Cascading strategy. To perform these analyses, we utilised
the efficient brute-force algorithm BF as defined in Section 9.4.1.

9.6.2.1 Accuracy

To assess the reliability of the FLB and ELB certificates in estimating the robust-
ness lower bound of FPF forests, we compare them with the BF algorithm on the
Breast Cancer D dataset.

Specifically, we compare the robustness R(Ak) calculated by each algorithm,
BF, ELB, and FLB, on forests trained with FPF. To better explore the capability

174 CHAPTER 9. FEATURE PARTITIONED FORESTS

Table 9.6: Robustness verification per-instance average execution time on Breast
Cancer D. FPF forest with |F | ≈ 300, hyperparameter b = 3, and maximum
number of leaves l̂ = 8.

method run time R(A1) |D̂| run time R(A2) |D̂| run time R(A3) |D̂|
BF 263.6 ms 91.2 100 1053.4 ms 84.2 100 3635 s 78.1 100

Cascading 27.1 ms 166.0 ms 36.1 s
each:

–FLB 2.7 ms 91.2 100 3.2 ms 84.2 100 3.3 ms 73.7 100
–ELB 0.8 ms 91.2 2 2.0 ms 85.1 8 29.7 ms 76.3 20
–BF 23.6 ms 91.2 2 160.8 ms 86.0 7 36.0 s 78.1 18

of the algorithms, we vary the training parameter b from 1 to 5 and the attacker’s
budget k from 1 to 3. The results of this analysis are reported in Table 9.5.

Firstly, we observe that with k = 1, the robustness estimations provided by
FLB and ELB are the same and exact in most settings. With k = 2, a slight
difference between ELB and FLB is observed, where ELB provides a slightly better
robustness estimation. However, both remain accurate in the estimation of the
robustness. For smaller values of b, i.e., b ≤ 3, the gap between the two lower
bounds increases with the attacker’s budget k. Finally, ELB always provides the
exact robustness with b ≥ 4 for every value of k, whereas FLB when k ≤ 2.
Note that, by definition of the lower bound algorithms, when k > b, the certifiers
estimation is useless, as there always exists a sufficiently large set cover to attack
the majority of the forest; consequently, both FLB and ELB estimate robustness
equal to zero.

From the results, we conclude that both certificates provide an accurate ro-
bustness lower bound of FPF forests. Moreover, while FLB has a slightly lower
robustness estimation than ELB, it has a significant advantage in terms of effi-
ciency, providing an accurate robustness estimation in polynomial time.

9.6.2.2 Efficiency

In this section, we analyse how the efficiency of the FLB and ELB certifiers can
be effectively exploited in a Cascading strategy to efficiently estimate the exact
robustness of a FPF forest.

In detail, given the test set D of the Breast Cancer D dataset, we collect
the per-instance average time to compute the exact robustness of a FPF forest
F with the BF algorithm and the Cascading strategy. The Cascading strategy
executes in cascade, from the most efficient (i.e., FLB) to the most accurate (i.e.,
BF), the robustness certification/verification algorithms to efficiently estimate the

9.6. MAIN RESULTS 175

robustness of F over the set D. As explained in Section 9.4, FLB is the most
efficient certifier among the two provided in this work; however, it is also the one
that mostly underestimates the robustness of the models. Therefore, all instances
for which FLB cannot certify the absence of attacks, i.e., D̂FLB, are given as input
to the slower but more accurate ELB certifier. However, ELB also provides an
approximate robustness estimation, so the instances not certified as secure, i.e.,
D̂ELB, are eventually given as input to the exact brute-force BF algorithm. Finally,
the results of all three algorithms are combined to compute the exact robustness
of the forest on the test set D.

The results of this analysis are reported in Table 9.6. The table reports the
per-instance average time required to run the brute-force algorithm BF and the
proposed Cascading strategy. For the Cascading strategy, we provide a breakdown
of the individual contributions of each algorithm, including the average execution
time per instance, the estimated robustness, and the percentage of instances pro-
cessed from the test set D̂. Note that D̂ contains only the correctly classified
instances by F in the absence of an attack.

The results show that the computational cost required by BF exponentially
increases when increasing k. As expected, the robustness estimation with the BF
algorithm quickly becomes infeasible. The proposed Cascading strategy provides
a 10× speed-up that increases to 100× when k = 3. This huge gap is due to the
efficiency and accuracy of the proposed lower bounds. On varying k, the fraction
of instances for which FLB cannot certify the non-attackability is respectively 2%,
8%, and 20%. These instances are processed during the ELB step, which leaves to
the last BF step the 2%, 7%, and 18%, respectively, of instances to be analysed.
The execution of the BF algorithm on these last instances largely covers from 85%
to about 100% of the total running time, while the FLB and ELB steps are two
or more orders of magnitude faster. We thus conclude that the proposed FLB and
ELB are both sufficiently accurate, as discussed in the previous section, and they
can be used in a Cascading-like strategy to provide significant speed-ups to any
other robustness verification method for an exact robustness estimation.

The last efficiency analysis we perform aims to highlight the power of the FLB
in certifying the robustness lower bound of FPF forests in scenarios where an
exact robustness computation with the BF algorithm is infeasible. Specifically, we
compute the robustness lower bound using FLB on the Wine, Breast Cancer
D, and Spam Base datasets, varying the FPF training hyperparameter b and the
attacker’s budget k.

In this analysis, we also consider three binarised classification datasets gener-
ated from MNIST, namely MNIST 0 vs. 1, MNIST 1 vs. 7, and MNIST
5 vs. 6. These datasets allow us to provide a more interpretable explanation
of the effect of an evasion attack on input instances. While it is challenging to

176 CHAPTER 9. FEATURE PARTITIONED FORESTS

understand the meaning of perturbing any combination of k features of a feature
vector representing 13 different constituents, as in the case of the Wine dataset, it
is much easier to visualise the effect of perturbing k pixels of an image representing
a digit.

Furthermore, the MNIST datasets encompass a much larger number of fea-
tures, making robustness computation with brute-force approaches infeasible. In-
deed, the computational efficiency of the proposed certifiers allows us to compute
the robustness lower bound for large values of the attacker’s budgets k. We demon-
strated the robustness of FPF forests against attacks executed with a budget up
to k = 100, i.e., attacks over any combination of 100 features out of 784. This is
an extremely high number that is intractable for the BF algorithm.

We summarise the results for each dataset in Figure 9.1. The x axis represents
the robustness R(Ak), while the y axis the number of attacked features k, i.e., the
attacker’s budget. The colours of the curves and the colour map on the right side
of each plot identify models trained with different values of the training parameter
b. The black dashed line indicates the majority class percentage in the test set.

The figures show that for larger values of b, FPF forests can sustain a larger
attacker strength. For example, in Breast Cancer D dataset, it is possible
to train a model with robustness 80% when 4 features out of 30 (or out of 15
relevant features) are attacked. However, when the attacker’s strength becomes
too significant compared to the number of relevant features in the dataset, the
model’s robustness significantly drops under the majority class line.

Intuitively, among the three MNIST datasets, MNIST 0 vs. 1 is the one
where an attacker needs to modify the higher number of features, i.e., pixels of the
image, to transform a 0 digit into a 1, and vice versa. As shown in Figure 9.1b,
for this dataset, it is possible to train FPF forests that guarantee 95% accuracy
(i.e., robustness) with 20 attacked features and 90% with 30 attacked features. In
Figure 9.1d, for MNIST 1 vs. 7, where it is easier to transform a 1 into a 7,
attacking 10 features is sufficient to reach 95% of robustness. Finally, the MNIST
5 vs. 6 dataset is the easiest to attack because, graphically, the digits 5 and 6
are very similar, and the attacker can modify fewer features to transform one digit
into the other. This is evident in Figure 9.1f, where with just 10 attacked features
(i.e., pixels), the robustness decreases to 90%.

With this final analysis, we demonstrate how FLB can be used to efficiently
analyse the behaviour and robustness of FPF forests in extreme adversary scenarios
where using an exact robustness verifier would be prohibitive. Furthermore, the
results align with our expectations of the ease or difficulty of performing an attack
that makes an instance very similar to the instances belonging to the target class.
This shows that FLB is also accurate in estimating the behaviour of the robustness
of FPF forests under attack.

9.6. MAIN RESULTS 177

0 1 2 3 4 5 6

attacker’s budget k

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

R
(A

k
)(

%
)

majority class

1

2

3

4

5

6

hyp
erp

aram
eter

b

(a) Wine, |F | ≈ 3000, l̂ = 8.

0 10 20 30 40 50 60 70 80 90 100

attacker’s budget k

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

R
(A

k
)(

%
)

majority class

1

10

19

28

37

46

55

64

73

82

91

100
hyp

erp
aram

eter
b

(b) MNIST 0 vs. 1, |F | ≈ 500, l̂ = 16.

0 2 4 6 8 10 12 14

attacker’s budget k

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

R
(A

k
)(

%
) majority class

1

2

3

4

5

6

7

8

9

10

11

12

13

14

hyp
erp

aram
eter

b

(c) Breast Cancer D, |F | ≈ 1000, l̂ = 8.

0 10 20 30 40 50 60 70 80 90 100

attacker’s budget k

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

R
(A

k
)(

%
)

majority class

1

10

19

28

37

46

55

64

73

82

91

100

hyp
erp

aram
eter

b

(d) MNIST 1 vs. 7, |F | ≈ 500, l̂ = 16.

0 2 4 6 8 10 12 14

attacker’s budget k

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

R
(A

k
)(

%
) majority class

1

2

3

4

5

6

7

8

9

10

11

12

13

14

hyp
erp

aram
eter

b

(e) Spam Base, |F | ≈ 1000, l̂ = 32.

0 10 20 30 40 50 60 70 80 90 100

attacker’s budget k

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

R
(A

k
)(

%
)

majority class

1

10

19

28

37

46

55

64

73

82

91

100

hyp
erp

aram
eter

b

(f) MNIST 5 vs. 6, |F | ≈ 500, l̂ = 32.

Figure 9.1: Robustness R(Ak) computed with FLB by varying b and k.

178 CHAPTER 9. FEATURE PARTITIONED FORESTS

9.7 In-Depth Analysis

In this final section of the experimental part, we conduct an in-depth analysis
of the hyperparameters b and r of the FPF learning algorithm. Additionally, we
provided a theoretical analysis of the robustness of robust forests trained with a
single round of FPF. Specifically, we formalised the probability of a robust forest
FP to predict the correct label for an input instance under attack while considering
different values of the attacker’s budget and correct-tree-prediction probability.

9.7.1 Hyperparameter Analysis

The FPF learning algorithm has two hyperparameters. The first is the hyperpa-
rameter b, representing the maximum number of features the FPF forest tolerates
to be attacked while still ensuring theoretical robustness by construction. The sec-
ond hyperparameter is r, indicating how many iterations of robust partitioning to
perform and how many robust sub-forests to include in the final ensemble. Recall
that each round r adds a robust forest FP containing 2b+1 trees to the final forest
F . For each combination of hyperparameter values r and b, we train a model and
collect the robustness on the validation set for different values of the attacker’s
budget k. Please note that, for both tables, A0 corresponds to the model’s accu-
racy in the absence of an attack (i.e., Ak with k = 0). For both hyperparameters,
we conduct the analysis on the Breast Cancer D dataset, and the results are
presented in two tables.

In Table 9.7, we evaluate the effect of varying the number of rounds r on
FPF forests for different values of b and the attacker’s budget k. For each b
and k configuration, the highest robustness obtained among different r values is
highlighted in bold to emphasise the effect of the r parameter in various attack
scenarios. As seen in the results, in the majority of cases, executing more iterations
r allows for the training of more robust models, with robustness increasing with
the number of rounds until reaching a plateau. We conclude that using a large
number of rounds r enhances the robustness of the trained model.

The results of the analysis on hyperparameter b are provided in Table 9.8.
For each forest size |F | and attacker’s budget k, we highlight in bold the highest
robustness provided by the corresponding b values. This emphasises the effect of
the hyperparameter b as the intensity of the attack varies and helps to understand
whether it is always better to choose the largest possible b or whether it should
instead be chosen based on the attacker’s budget k.

To better understand the results, recall that the Breast Cancer D dataset
has only 15 informative features, which are challenging to partition into 2b + 1
sets for large values of b. In this case, the results are mixed, showing two different
trends. For attacks generated by A2 and A3, increasing b improves robustness, and

9.7. IN-DEPTH ANALYSIS 179

using b ≥ 4 is always worthwhile. When the attacker’s budget is limited to k = 1,
the best configuration depends on the number of trees. When the number of trees
is limited, the robustness increases with b. However, when the forest is sufficiently
large, increasing the number of trees outweighs the benefit of increasing b.

In conclusion, while increasing the number of rounds r to increase the robust-
ness is always beneficial, increasing b when the total number of trees is small, and
the number of informative features is limited is not always a good strategy.

Table 9.7: Sensitivity analysis of FPF forests to the hyperparameter r on the
Breast Cancer D dataset. Best results in bold for each value of Ak and b.

Ak r
hyperparametr b

1 2 3 4 5

0
1 95.6 93.0 94.7 95.6 93.0
15 93.9 93.9 93.9 93.9 93.9
30 93.9 93.9 93.9 93.9 93.0

1
1 84.2 90.4 91.2 89.5 91.2
15 92.1 93.0 92.1 90.4 89.5
30 92.1 93.0 92.1 90.4 89.5

2
1 0.0 75.4 83.3 82.5 84.2
15 67.5 84.2 86.0 86.8 86.0
30 71.9 93.9 86.0 86.8 86.8

3
1 0.0 12.3 67.5 72.8 74.6
15 11.4 40.4 77.2 80.7 81.6
30 15.8 47.4 76.3 80.7 81.6

9.7.2 Theoretical Analysis

In this section, we analytically study the behaviour of FPF on varying the number
of rounds r, the number of features d, the attacker’s budget b, and we also take into
consideration the probability of incorrect prediction by trees of the forest. The aim
of this analysis is to investigate the impact of the above hyperparameters on the
robustness of a forest built by FPF. To do so, we resort to the common black-box
attack scenario where the attacker has no access to the internal structure of the
forest to choose which features to attack. We thus compute the robustness of a
forest F by estimating the probability that the attacker Ab may successfully fool
the given forest by picking b features at random. Indeed, this probabilistic analysis
is aimed at understanding the asymptotic behaviour of the proposed algorithm.

180 CHAPTER 9. FEATURE PARTITIONED FORESTS

Table 9.8: Sensitivity analysis of FPF forests to the hyperparameter r on the
Breast Cancer D dataset. Best results in bold for each value of k and |F |.

|F | Ak
b

1 2 3 4 5

50

0 93.9 93.9 94.7 93.9 95.6
1 90.4 92.1 91.2 93.0 92.1
2 73.7 85.1 86.8 86.8 86.0
3 10.5 40.4 72.8 82.5 82.5

75

0 93.9 93.9 93.9 93.9 93.9
1 91.2 93.0 91.2 90.4 90.4
2 71.9 84.2 86.8 86.0 86.8
3 16.7 40.4 75.4 81.6 81.6

100

0 93.9 93.9 93.9 93.9 93.9
1 93.0 92.1 92.1 90.4 90.4
2 46.5 84.2 86.0 88.6 86.8
3 15.8 48.2 76.3 79.8 81.6

We highlight that in the experimental section, we rather adopt a more severe
white-box attack scenario where we consider an instance as attackable if there is
at least one successful attack.

Let d be the number of features in the feature set F , b the attacker’s budget, P
a robust equi-partition of F , and s=d/(2b+1) the number of features in each of the
2b + 1 sets. For the sake of simplicity, to guarantee equi-partitioning, we assume
that d is a multiple of 2b+1; otherwise, to guarantee semi-equi-partitioning, some
partitions must have size s=⌊d/(2b+ 1)⌋ and others s+ 1. Moreover, we let e be
the probability of a tree t ∈ F of being erroneous, i.e., we do not assume that all
trees are perfectly accurate. We further adopt the conservative and pessimistic
assumption that if the attacker modifies a feature, then a tree using that feature
will provide a wrong prediction.

We first compute the probability Pr(h) that b features, selected at random by
Ab, overlap with exactly h partitions in P . To do so, we first restrict our attention
to attacks that are entirely included in a given subset H ⊂ P , with |H|=h, and
then we generalise to the full partition P . When |H|=h, the set H includes sh
features, and we denote by UH the set of possible attacks over any b features in
H, where |UH | =

(
sh
b

)
is the number of such attacks. Indeed, we are interested

in computing ÛH ⊆ UH , i.e., the set of attacks to the features in H that exactly
overlap all the h partitions in H (and not less).

9.7. IN-DEPTH ANALYSIS 181

Proposition 4 (Computing the number of attacks ÛH). Let Ki be the set of all
attacks in UH that do not overlap with Pi ∈ H, and let K̄i be the complement of
Ki in UH . The following equation holds:

ÛH =
h⋂

i=1

K̄i.

Proof of the correctness of Proposition 4. Let C be a possible attack, i.e., a tuple
of b features chosen from the sh features of the h partitions in H. For every
C ∈ ÛH , by definition C contains h features from h different partitions in H, and
therefore C has non empty intersection with every K̄i. This proves ÛH ⊆ ∩hi=1K̄i.

To also prove that ∩hi=1K̄i ⊆ ÛH , let’s suppose that C ∈ ∩h
i=1K̄i, and that, by

contradiction, C does not overlap with h partitions as C does not contain any
feature in partition Pj ∈ H. This implies that C ∈ Kj since Kj contains by
construction all the tuples of b features that do not overlap with Pj ∈ H. Since
C ∈ Kj ⇒ C /∈ K̄j, which in turn implies that C /∈ ∩h

i=1K̄i. This contradicts our
hypothesis and concludes the proof.

We can finally write the probability Pr(h) as follows:

Pr(h) =

∑
H⊂P,|H|=h

∣∣∣ÛH

∣∣∣(
d
b

) =

(
2b+1
h

)
|⋂h

i=1 K̄i|(
d
b

) , (9.2)

where the factor
(
2b+1
h

)
counts the number of ways of selecting H ⊂ P , with

|H| = h, while the denominator
(
d
b

)
is the number of all the possible attacks on

the full feature set.
To compute the cardinality of ÛH , we resort to the complementary formulation

of the inclusion-exclusion principle:∣∣∣ÛH

∣∣∣ = ∣∣∣∣∣
h⋂

i=1

K̄i

∣∣∣∣∣ =
∣∣∣∣∣UH −

h⋃
i=1

Ki

∣∣∣∣∣ =
= |UH | −

h∑
i=1

|Ki|+
∑

1≤i<j≤h

|Ki ∩Kj|+ . . .+ (−1)h|K1 ∩ . . . ∩Kh|.

We can rewrite the above formula as follows:∣∣∣ÛH

∣∣∣ = ∣∣∣∣∣
h⋂

i=1

K̄i

∣∣∣∣∣ =
(
sh

b

)
−

h∑
i=1

(
s(h− 1)

b

)
+

∑
1≤i<j≤h

(
s(h− 2)

b

)
+ . . .+

=
h∑

k=0

(−1)k
(
h

k

)(
s(h− k)

b

)

182 CHAPTER 9. FEATURE PARTITIONED FORESTS

0 2 4 6 8 10

number h of partitions in P

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
r(
h

)
b = 2

b = 3

b = 5

b = 10

(a) Expected harmed partitions.

2 3 4 5

attacker’s budget b

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

P
r(
F
P

)

ε = 0.06

ε = 0.08

ε = 0.10

ε = 0.12

(b) Expected ensemble’s robustness.

Figure 9.2: Expected attacker effect.

where the cardinality of the intersection of k distinct Ki sets is computed as(
s(h−k)

b

)
, resulting by the attacks to b features limited to the remaining of h − k

partitions in H ⊂ P , each of size s.
We can finally conclude by rewriting the formula in Eq. 9.2:

Pr(h) =

(
2b+1
h

)∑h
k=0(−1)k

(
h
k

)(
s(h−k)

b

)(
d
b

) (9.3)

We can now compute the probability Pr(FP) that FP is accurate. The forest FP
of 2b + 1 trees is accurate if the number e of erroneous trees is at most b. There
are several cases that lead to this outcome: we may have h trees affected by the
attacker and the remaining e−h trees being wrong independently of the attacker,
each with probability ϵ. Moreover, those e − h trees can be selected at random
among the |P| − h ones. We define as Pr(e|h) the probability that a total of e
trees in FP provide a wrong prediction, given that h were already harmed by the
attacker:

Pr(e|h) =
(|P|−h

e−h

)
ϵe−h(1−ϵ)|P|−e. (9.4)

Given that the attacker may negatively affect at least one and at most b trees, we
have that the probability of FP being correct is:

Pr(FP) =
b∑

e=1

e∑
h=1

Pr(h)︸ ︷︷ ︸
attacked

Pr(e|h)︸ ︷︷ ︸
inaccurate

. (9.5)

9.7. IN-DEPTH ANALYSIS 183

Figure 9.2a shows the probability Pr(h) for different values of b. In this study,
the number of features in the dataset is chosen to have the multiple of 2b + 1
closest to 100. We highlight that the probability of “hitting” only a few partitions
is usually small. When b = 5, there are 11 partitions, and there is less than 15%
probability of hitting 3 partitions and about 85% of hitting at least 4 partitions;
when b = 10, there is nearly 0 probability of hitting less than 6 partitions out of 21,
and there is about 80% probability of hitting at least 8 partitions. Interestingly,
hitting b = 10 partitions is not the most probable event.

We are hypothesising that our attacker is very powerful, as it can likely impact
features used by a significant portion of trees in a forest FP by breaking these
trees. This is partially confirmed in Figure 9.2b, where the error rate probability
ϵ of trees is also considered. The expected accuracy Pr(FP) is not large, but,
interestingly, increasing the attacker’s budget does not have a significant impact.
It is true that the attacker can harm a good number of partitions, yet the majority
of them are expected to provide correct results, even considering e.

184 CHAPTER 9. FEATURE PARTITIONED FORESTS

9.8 Summary

In this section, we summarise the main contributions of the research presented in
this chapter, titled “Feature Partitioned Forests”.

• Evasion Attaks: Machine learning systems are affected by adversarial ma-
chine learning attacks, where a malicious entity attempts to force the system
to exhibit erroneous behaviour. Evasion attacks are well-known attacks in
the adversarial machine learning domain. The attacker performs an eva-
sion attack by perturbing a legitimate instance to induce the model to make
an incorrect prediction. Our contribution focussed on designing learning
algorithms for training tree-based binary classification ensembles robust to
evasion attacks. The adversary’s model we used is modelled through the L0-
norm, where the legitimate instance and the evasion instance differ at most
by k, i.e., the attacker’s budget k.

• Contribution: The main contributions of this work can be divided into two
parts. The first part involves the development of FPF, a learning algorithm
designed to train ensembles robust by construction against evasion attacks.
FPF trains forests of decision trees through random equi-partitioning of the
feature set, along with a projection of the dataset onto these partitions before
training each individual decision tree. This robust partitioning ensures that
less than half of the forest is involved during an evasion attack. The second
contribution comprises the development of two efficient and accurate certifi-
cation algorithms for estimating a lower bound on the robustness of forests
trained with FPF. These algorithms are Fast Robustness Lower Bound (FLB)
and Exhaustive Robustness Lower Bound (ELB). Additionally, we have de-
signed an efficient brute-force algorithm called BF for robustness verification,
leveraging the internal structure of trees to discretise the set of all possible
attacks. Lastly, we combined FLB, ELB, and BF into a cascading strategy
for efficient robustness verification of FPF forests.

• Main Results: Through extensive experiments, we demonstrated that forests
trained with FPF exhibit greater robustness against evasion attacks, outper-
forming the models trained by both robust and non-robust learning algo-
rithms. Furthermore, we showed that FLB and ELB are accurate robustness
certification algorithms, providing a tight lower bound on the exact model’s
robustness. Additionally, we demonstrated that the cascade strategy signifi-
cantly reduces robustness verification times, even by two orders of magnitude,
compared to solely executing an efficient brute-force algorithm like BF.

• In-Depth Analysis: Through an in-depth hyperparameter analysis, we
empirically demonstrated that the robustness of FPF forests increases with

9.8. SUMMARY 185

the number of robust sub-forests within the ensemble, i.e., the number of
iterations of the FPF algorithm. On the other hand, we showed that the
number of partitions used to divide the feature space must be proportional
to the attack’s budget. Excessive partitioning of the feature space leads to
less accurate individual trees, compromising the accuracy and robustness
of the final ensemble, especially when the dataset has a limited number of
relevant features.

9.8.1 Future Work

In this concluding section, we delineate prospective paths for future research and
extensions, building upon the results and ideas from this work.

• Different Adversary Models’s: In this work, we employed adversary’s
models based on the L0-norm, enabling the attacker to target any combina-
tion of a subset of features with any desired intensity. However, this type
of attack may not always be realistic or feasible in real scenarios. A poten-
tial extension of this research involves exploring more complex adversary’s
models constrained by norms different from L0-norm or exploiting rewriting
rules [36].

• Other Learning Algorithms: One of the most straightforward extensions
of this work is to exploit the main idea beyond robust feature partitioning
and dataset projection provided by FPF to enhance the robustness of non-
tree-based ensembles, such as ensembles of neural networks or other base
learners. Additionally, investigate the combined effect of FPF’s robust fea-
ture partitioning with learning algorithms to train robust base learners such
as Adversarial Boosting [92] or Robust Split [45].

• Multi-class classificaiton: Although in Section 9.4, we provided a solution
to exploit the main idea behind FLB and ELB certificates to create a certifi-
cation method for multi-class classification, the proposed FPF algorithm still
works exclusively on binary classification. Consequently, another promising
extension of this work is to adapt the FPF learning algorithm to multi-class
classification problems. In particular, it would be worth it to explore how ro-
bust feature partitioning and dataset projection can be effectively exploited
to handle multi-class classification while maintaining the models’ robustness
by construction in adversarial scenarios.

186 CHAPTER 9. FEATURE PARTITIONED FORESTS

Chapter 10

Beyond Robustness

In this chapter, we discuss the work titled “Beyond robustness: Resilience verifi-
cation of tree-based classifiers”, in proceedings as a full paper at the Computers
& Security, 2022. Further details can be found in the reference [31].

In this study, we delve into the scope of quantifying the security of machine
learning systems in adversarial scenarios where there is an attacker performing
evasion attacks. As explained above, among the various methods to evaluate the
security of machine learning models against evasion attacks, an important metric
is Robustness (defined in Equation 8.3).

Robustness is certainly an intuitive and desirable property to estimate the
performance of classifiers deployed in adversarial settings, yet it is sub-optimal
because it is strongly dependent on the choice of a specific input x . While the
performance of classifiers must indeed be empirically estimated on a set of correctly
labelled inputs (test set), such inputs are normally assumed to be sampled from
an underlying data distribution, and robustness says nothing about unsampled
data. In other words, a robustness proof for x does not provide any guarantee
about any other input x ′ close to x which could have been sampled in place of it.
This is concerning because the actual inputs of the classifier at operational phase
time will be different samples drawn from the same distribution of x , which are
not covered by standard security assessments based on robustness. This problem
has been independently acknowledged in very recent work on global robustness
properties by Chen et al. in [49] and Leino et al. in [100], which advocates the need
for verification techniques establishing robustness guarantees on all the possible
inputs provided to the classifier. Unfortunately, these efforts are still at an early
stage, and there is no uniform “one size fits all” definition of global robustness
that can be readily used to verify the security of classifiers. The work introduced
in this Chapter falls in the same research line of global robustness properties, yet
it takes a different direction to better complement the extensive amount of work
on robustness verification.

187

188 CHAPTER 10. BEYOND ROBUSTNESS

In particular, in this Chapter, we propose a generalisation of robustness, called
resilience, designed to make the security assessment of classifiers more reliable.
Resilience generalises traditional robustness guarantees from a specific test set to
all the other possible test sets which could have been sampled in place of it, i.e.,
which are close to it given an appropriate definition of neighborhood. Resilience
thus provides a more conservative account of the security of classifiers than robust-
ness while retaining its intuitive flavour. Most importantly, the connection between
resilience and robustness allows one to leverage traditional tools for robustness ver-
ification as the first step of a resilience verification pipeline, thus integrating with
significant research efforts spent on robustness verification.

The main contributions of this work are two. First, we criticise the traditional
Robustness measure used to estimate the security of classifiers against evasion
attacks, and we propose an improved measure called Resilience. We then discuss
how resilience can be estimated by combining an arbitrary robustness verification
technique with a data-independent stability analysis, which identifies a subset of the
feature space where the classifier does not change its predictions despite adversarial
perturbations at test time. Then, we present a simple technique to turn any
classifier into a globally robust classifier (in the sense of Chen et al. in [100]) by
leveraging such data-independent stability analysis, thus clarifying the connections
with recent work in the area.

Second, we propose a data-independent stability analysis for decision trees
and tree-based ensembles. The stability analysis is based on symbolic attacks,
i.e., symbolic representations of a set of instances, along with their (relevant)
adversarial perturbation sets. These representations facilitate the analysis of tree-
based classifiers independently of a specific test set. Our analysis is proved sound
and can be readily leveraged to establish both robustness and resilience proofs for
tree-based classifiers (Section 10.4).

In the experimental part, we show that resilience verification is both useful and
feasible in practice, yielding a more reliable security assessment of classifiers de-
ployed in adversarial settings. In particular, our experiments show that robustness
can be significantly affected by the choice of a specific test set; hence, it may give
a false sense of security. On the other hand, resilience is effective at discriminating
between secure models and models that turned out to be robust just by accident,
i.e., thanks to a lucky, specific sampling of the test set. Finally, our work showed
why resilience is superior to robustness in terms of practical security guarantees
and showed that even robust-trained models are not necessarily resilient.

The chapter is organised as follows. In Section 10.1, we provide an overview
of related work in the field of adversarial machine learning and global robustness
verifiers for tree-based classifiers. Section 10.2 defines the threat model and adver-
sary’s model used in this work. Section 10.3 introduces the first main contribution

10.1. RELATED WORK: SECURITY VERIFICATION 189

of this work, namely the introduction of the metric resilience, highlighting its
differences with robustness and stability. Section 10.4 presents the second main
contribution, which is the definition of the data-independent stability analyser for
tree-based classifiers. Section 10.5 provides a detailed discussion of the implemen-
tation of the data-independent stability analyser and the experimental setup used
to verify the usefulness of the resilience metric. In Section 10.6, we delve into the
main results, demonstrating that robustness offers only a local view of robustness,
leading to a false sense of security, while resilience provides a better estimate of
model security under attack. Section 10.7 includes an analysis of the efficiency of
the data-independent stability analyser implementation and provides correctness
proofs for the theorems on which the data-independent stability analyser is based.
Finally, in Section 10.9, we summarise the contributions, results, and potential
future directions of this study.

10.1 Related Work: Security Verification

Recent independent works in the domain of adversarial machine learning acknowl-
edged the limitations of robustness for the security verification of classifiers [49,
100]. Chen et al. in [49] defined a set of five new global robustness properties, i.e.,
universally-quantified statements over one or more inputs to the classifier and its
corresponding outputs. These properties also include a data-independent stability
definition that requires any two inputs differing just for the value of a fixed set
of features to lead to “close” predictions. The authors also proposed a technique
to verify this property for a custom type of rule-based classifiers generalising deci-
sion tree ensembles. Although their work shares similarities with ours in terms of
research goals, we note several important differences. First, our data-independent
stability analysis allows one to identify a subset of the feature space where the clas-
sifier is stable rather than verifying stability over the entire feature space; in other
words, we can effectively identify sub-spaces where stability is globally guaranteed.
This is more useful in practice because stability over the entire feature space is
often too strong, essentially requiring that the set of non-robust features is unused
for classification. Indeed, contrary to the security notion proposed in this work,
i.e., the resilience, their global robustness properties are entirely abstract from the
data distribution, which is a sound yet overly conservative choice in the machine
learning setting. This claim is confirmed by the experimental evaluation provided
by Chen et al. in [49], which shows that stability cannot be verified for any model
(standard or robust) besides those deliberately trained by the authors to enforce
that property. Rather, we are able to use our resilience notion to perform practi-
cally useful security evaluations of existing ML models while still overcoming the
limitations of robustness confirmed by our experiments.

190 CHAPTER 10. BEYOND ROBUSTNESS

Furthermore, Leino et al. in [100] introduced globally robust neural networks.
They proposed a technique to train neural networks with a special output ⊥,
designed to signal predictions performed on a subset of the feature space that is too
close to the decision boundary and, hence, potentially subject to evasion attacks.
Their notion of global robustness requires that any two “close” inputs must lead
to the same output unless ⊥ is returned for at least one of the two inputs. Our
data-independent stability analysis essentially captures the same notion because
its output could also be used to return ⊥ on all the instances that do not fall on
a stable subset of the feature space. However, the global robustness defined by
Leino et al. in [100] cannot be used to reason about the security of traditional
classifiers, which do not use the ⊥ label. Finally, their technical treatment is quite
different from ours since they focus on neural networks while we care more about
tree-based classifiers in adversarial scenarios.

The security certification of decision trees and decision tree ensembles has
received an increasing amount of attention from the research community during
the last few years. The first seminal work on the topic is due to Kantchelian
et al. in [92]. They showed that computing minimal adversarial perturbations
for tree ensembles is NP-complete in general and proposed a mixed-integer linear
programming technique for the task. This motivated additional work in the area
by Chen et al. in [46]. They investigated restricted fragments of the problem
which are tractable in polynomial time and proposed an approximated, yet sound,
approach to verify robustness against L∞-norm attackers. In later work, Ranzato
and Zanella in [145] proposed the use of abstract interpretation to mitigate the
complexity of robustness verification by means of a sound over-approximation of
the ensemble predictions, again assuming L∞-norm attackers. Calzavara et al. in
[33] showed that abstract interpretation could also be used to verify the robustness
of decision trees against an expressive threat model, where the attacker is encoded
as an arbitrary imperative program. All of these approaches only prove robustness
and cannot be directly used to prove resilience without a data-independent stability
analysis, like the one proposed in the present paper.

A different line of work which is more directly comparable to ours is related to
the VoTE checker by Törnblom and Nadjm-Tehrani in [164]. Given a tree ensem-
ble, VoTE computes the set of all the equivalence classes induced by the ensemble
over the feature space. Once the equivalence classes have been computed, VoTE
uses a property checker module to verify different properties on them. The idea of
computing equivalence classes from the tree ensemble yields a data-independent
analysis approach; however, there are important differences with respect to our
work. First, their analysis is not adversary-aware, and the security implications
of data independence are not explored by the authors since they just verify tra-
ditional robustness properties. We rather clarify the practical relevance of data

10.2. THREAT AND ADVERSARY’S MODEL 191

independence by introducing a new formal security notion called resilience, and
we design experiments to show its empirical value on real datasets. Moreover,
computing all the equivalence classes of an ensemble is infeasible in general due
to their combinatorial explosion, as also observed by the authors of VoTE. In a
follow-up work, the same authors proposed an abstraction-refinement approach to
mitigate this complexity problem [163]. However, contrary to our analysis, their
extension is not proved sound, which is an important requirement for the analysis
of classifiers deployed in adversarial settings.

10.2 Threat and Adversary’s Model

In this study, we consider a threat model for a machine learning system designed
for binary classification, making it susceptible to evasion attacks. An attacker at-
tempts to mislead an already trained binary classifier h by perturbing a legitimate
instance x to generate an evasion instance z . We assume each feature in the fea-
tures space F denoted as f ∈ {1, . . . , d} is associated with a cost cf ∈ N, that the
attacker has to pay in order to add to f a perturbation δ ∈ R arbitrarily drawn
from an interval Iatkf . The interval Iatkf can be different for each feature f and takes
the form of [δl, δr], where δl and δr are the minimal and the maximal perturbation
values, respectively. We encode robust features that cannot be manipulated by
setting [0, 0] as their perturbation interval.

We characterise the attacker’s model Ab by using the previous definition of
the threat model and constraining the attacker with a budget b, which determines
the maximum aggregate cost the attacker can spend to manipulate features. The
budget b characterises the attacker’s power. For the sake of clarity, we will refer to
the attacker’s model as A when b is known from the context. Given the attacker’s
model Ab, we formalise the adversarial perturbation set Ab(x) as follows:

Definition 10 (Adversarial Perturbation Set). Given an instance x ∈ X , we define
the adversarial perturbation set Ab(x), as the set of the adversarial instances z
for which there exists a set of attacked features B ⊆ F such that:

1. For all f ∈ B, we have z(f) = x(f) + δ for some δ ∈ Iatkf .

2. For all f ̸∈ B, we have z(f) = x(f).

3. We have
∑

f∈B cf ≤ b.

This threat model is inspired by traditional distance-based attackers from the
adversarial ML literature and it is expressive enough to model a wide range of
attacks, including those based on the L0-norm and the L∞-norm which are tradi-
tionally used in prior work [34, 46]. In particular, note that:

192 CHAPTER 10. BEYOND ROBUSTNESS

• L0-norm attackers can be modelled by assuming that each feature can be
perturbed in the interval [−∞,+∞] by paying cost 1 and by setting the
attacker’s budget to the maximum L0-distance assumed for the attack.

• L∞-norm attackers can be modelled by assuming that each feature can be
perturbed in the interval [−δ,+δ] by paying cost 1, where δ is the maximum
L∞-distance assumed for the attack, and by setting the attacker’s budget to
the total number of features.

By using this threat model, we are able to design a relatively general analysis
technique that readily applies to at least these two popular classes of attackers from
the literature. These attackers are popular because they are simple mathemati-
cal models of two representative classes of threats: strong corruptions of a small
number of features (L0-norm) and weak corruptions of all the features (L∞-norm).

10.3 Contribution 1: The Resilience Metric

Before delving into one of the primary contributions of this work, we introduce
the fundamental technical elements necessary for a comprehensive understanding
of this study. Here, our attention is centred on conventional binary decision trees,
which represent the most prevalent and widely used variant of such models.

Given that we extensively discussed the internal structure of decision trees in
Section 2.1.2 and have also addressed it in the previous Chapter 9, we only repeat
a few essential details. A decision tree t can be inductively defined as a leaf λ(y) or
an internal node σ(f, v, tl, tr), where f identifies a feature, v is the node threshold,
and tl and tr are the left and right decision trees, respectively. At test time,
the instance x traverses the tree t until it reaches a leaf λ(y), which returns the
prediction, denoted by t(x). Specifically, for each traversed tree node σ(f, v, tl, tr),
x falls into the left sub-tree tl if x

(f) ≤ v, and into the right sub-tree tr otherwise.
In this work, ensemble decision tree in tree-based ensembles (i.e., forests)

F = {t1, . . . , tn} where the ensemble prediction F (x) is computed by perform-
ing majority voting on the individually tree-predicted classes.

10.3.1 Robustness vs. Resilience

We now discuss important shortcomings in the traditional robustness measure, and
we propose a generalisation of robustness, called resilience, which is designed to
mitigate those. We then explain how resilience can be verified in practice, and we
further elaborate on its design by discussing its connections with a recent definition
of global robustness. [100].

10.3. CONTRIBUTION 1: THE RESILIENCE METRIC 193

10
X1

Accuracy = 9/10 = 0.9
Robustness = 7/10 = 0.7

Accuracy = 9/10 = 0.9
Robustness = 4/10 = 0.4

5

8

10
X1

X2 X2

-1

+1

-1 (instability area)

+1 (instability area)

+1

-1

5.75

4.25
5

8

5.75

4.25

Figure 10.1: Robustness is not robust: slightly different test sets lead to very
different values of robustness

A key problem of robustness is its strong data-dependence, i.e., robustness is
quantified on a specific test set Dtest. Hence, it is possible that even tiny differ-
ences between two test sets Dtest and D′

test might lead to quite different values of
robustness. This might give a false sense of security. For example, a classifier
having robustness 0.7 on Dtest might only have robustness 0.4 on D′

test, although
both Dtest and D′

test are representative of the same data distribution of the test
instances. We show this problem of robustness in Figure 10.1, where we compute
the accuracy and robustness of both Dtest and D′

test with the same tree classifier.
We assume here a two-dimensional feature space and an L1-norm attacker such
that A(x) = {z | z ∈ X ∧ ∥z − x∥1 ≤ 0.75}, leading to the highlighted instability
areas around the decision boundaries of the tree. The figure shows that the same
classifier provides very different robustness measures on the two close test sets
Dtest and D′

test. The reason behind this drop in robustness lies in more instances
of D′

test falling in the instability area. Hence, the adoption of Dtest over D′
test for

robustness computation might give a false sense of security.
To mitigate this problem of robustness, we propose resilience, a new security

measure that explicitly assumes that test instances are sampled from a given data
distribution; hence, each instance x is just a possible sample drawn from a set
of neighbours N(x). For example, N(x) may contain all the instances that are
within a maximum L∞-distance from x , as we assume in our experiments.

In Figure 10.1, we define N(x) = {z | z ∈ X ∧ ∥x − z∥∞ ≤ 0.50} and the
neighborhood of x is thus graphically represented by a small box around x . Indeed,
the figure shows these boxes only for the instances of Dtest whose neighbourhood
N(x) intersects the instability areas of the tree and, therefore, other instances in
their neighbourhood might suffer from evasion attacks.

194 CHAPTER 10. BEYOND ROBUSTNESS

Resilience avoids the shortcomings of robustness illustrated in Figure 10.1, as
it generalises the idea of robustness to all the test sets which could have been
sampled within neighbourhoods of the original test set. In other words, resilience
requires the classifier to be robust on test instances while remaining stable in their
neighbourhoods, for which the correct class labels are unknown.

Formally, given the attacker A, an instance x ∈ X , the classifier h, and let
N(x) be the neighbourhood set of the instance x , the classifier h is resilient on x
with respect to A if the following definition holds:

Definition 11 (Resilience). The classifier h is resilient on the instance x if and
only if h is robust on x and h is stable on all the instances x ′ ∈ N(x).

Back to our example, the resilience of both the test sets of Figure 10.1 turns
out to be 0.4, i.e., the measured robustness of D′

test, the unlucky test set shown in
the right part of the figure.

Note that resilience generalises beyond the test set by means of the N(x)
component, which extends the stability guarantees of robustness to an uncountable
set of neighbours not included in the test set. Still, similarly to robustness, we can
quantify resilience on a test set of correctly labelled instances like in traditional
ML pipelines by defining a resilience measure R(A,N) as follows:

R(A,N) =

∑
(x ,y)∈Dtest

1[∀x ′ ∈ N(x),∀z ∈ A(x ′) | h(z) = y]

|Dtest|
(10.1)

Observe that resilience provides a lower bound to robustness as claimed, i.e.,
R(A,N) ≤ R(A,N) for every classifier h and test set Dtest.

Finally, we acknowledge that resilience is still a data-dependent property. How-
ever, the dependence from the test set is much weaker for resilience than for robust-
ness, thanks to the introduction of the N(x) component. Indeed, data dependence
is not necessarily a problem per se because a high-quality test set is required to
empirically assess the performance of ML models anyway; however, excessive de-
pendence on a given test set might provide a false sense of security against evasion
attacks.

10.3.2 Resilience Verification

Traditional robustness verification approaches cannot be readily applied to prove
resilience. In particular, note that robustness verification takes as input an instance
x and attempts to assess its stability, while resilience verification requires proving
stability for an uncountable set of instances N(x).

Nevertheless, it is possible to estimate resilience by combining robustness ver-
ification with a data-independent stability analysis. In particular, assume one has

10.3. CONTRIBUTION 1: THE RESILIENCE METRIC 195

a technique to identify the set XS = {x ∈ X | h is stable on x}, then h is resilient
on x if and only if h is robust on x and N(x) ⊆ XS. Note that XS in Figure 10.1
corresponds to the whole area except the instability ones. Hence, resilience verifi-
cation reduces to robustness verification with the additional condition N(x) ⊆ XS,
i.e., we also have to check that N(x) does not intersect the instability area. This
allows one to take advantage of existing robustness verifiers also to quantify re-
silience, provided that the stable part of the feature space XS has been computed.
Note that computing XS is not trivial, in particular for tree ensembles, because
a given instance traverses the ensemble reaching a set of leaves, and any of such
reachable set of leaves corresponds to a sub-space which should be evaluated for
inclusion in XS. Clearly, the number of these sub-spaces grows exponentially with
the number of trees in the ensemble. In order to compute XS, and therefore com-
pute resilience, we resort to an approximated approach: computing a tractable
under-approximation of XS for decision trees and decision tree ensembles is a key
contribution of this work.

In particular, the data-independent stability analysis introduced in Section 10.4
allows one to compute a set X ′

S ⊆ XS, i.e., a sound under-approximation of the
portion of the feature space where a tree-based classifier is stable. The proposed
computation of X ′

S depends on the classifier alone and not on the test data at
hand. In fact, we can exploit the generality of X ′

S to efficiently compute lower
bounds for the robustness and resilience measures as follows.

Given that if x ∈ X ′
S and h(x) = y, then h is robust on x , we can define a

lower bound R̂ on robustness as:

R̂(A,X ′
S) =

∑
(x ,y)∈Dtest

1[x ∈ X ′
S ∧ h(x) = y]

|Dtest|
(10.2)

Similarly, given that if h is robust on x and N(x) ⊆ X ′
S, then h is also resilient

on x , we can introduce a lower bound R̂ on resilience as:

R̂(A,X ′
S) =

∑
(x ,y)∈Dtest

1[∀z ∈ A(x) | h(z) = y ∧N(x) ⊆ X ′
S]

|Dtest|
(10.3)

Note that the pre-computation of X ′
S makes robustness verification straightfor-

ward for all the instances falling in X ′
S and that the computation of the resilience

estimate R̂(A,X ′
S) can potentially exploit any robustness verification method,

which allows one to leverage existing work in the area. Moreover, we may use
the accuracy of R̂(A,X ′

S) with respect to the true robustness R(A) (established
using an existing robustness verifier) as a proxy for the accuracy of X ′

S, which
allows us to assess the quality of the under-approximation R̂(A,X ′

S) and advocate
its adoption to mitigate the false sense of security provided by R(A).

196 CHAPTER 10. BEYOND ROBUSTNESS

Note that, for the sake of simplicity, hereinafter, we refer to R(A), R̂(A,X ′
S),

R(A,N), and R̂(A,X ′
S) as R, R̂, R, and R̂, respectively, when the attacker A, the

neighbour set N , and set X ′
S can be easily derived by the context.

10.3.3 Resilience vs. Global Robustness

Recent work proposed a technique to train globally robust neural networks, which
provide robustness guarantees for all the possible inputs rather than just for the
inputs in the test set [100]. The idea of globally robust neural networks, general-
isable to arbitrary classifiers, is that the set of labels Y is extended with a special
class ⊥, used to denote that no reliable prediction is possible because the instance
is too close to the decision boundary of the classifier and thus potentially suscep-
tible to evasion attacks. Global robustness requires that any two instances that
are close enough to each other are either assigned the same prediction or at least
one of them is flagged as ⊥. This property is intuitive and desirable; however,
contrary to resilience, it cannot be used to verify the security of existing classifiers
that have not been trained to return the ⊥ label.

Rather, note that the proposed approach to resilience verification based on a
data-independent stability analysis can be readily applied to transform any clas-
sifier into a globally robust classifier. In particular, given any classifier h and a
subset of the feature space X ′

S ⊆ X where h is stable, one can define a globally
robust classifier h′ as follows:

h′(x) =

{
h(x) if x ∈ X ′

S

⊥ otherwise

Observe that the previously defined robustness estimate R̂ provides a (local) ro-
bustness measure of the globally robust classifier h′ obtained through the previous
construction.

10.4 Contribution 2: Data-independent Stabil-

ity Analysis

In this section, we present the second main contribution of this work: a data-
independent stability analysis for decision trees and decision tree ensembles to
compute the two measures R̂ (robustness lower bound) and R̂ (resilience lower
bound) defined in Section 10.3.2, thus providing conservative (i.e., lower bound)
estimates of robustness and (most importantly) resilience. The analysis is proved
sound. We show that the portions of the feature space marked as stable by the

10.4. CONTRIBUTION 2: DATA-INDEPENDENT STABILITY ANALYSIS197

analysis may only contain instances where the classifier is indeed stable. Proofs
are given in Section 10.7.2.

10.4.1 Preliminaries

Our analysis leverages intervals of real numbers. Given a, b ∈ R∪{−∞,+∞} with
a ≤ b, we use standard notation for intervals, using parentheses to represent open
bounds and brackets to represent closed bounds. This leads to four possible types
of intervals: (a, b), [a, b), (a, b], and [a, b]. We use I, J to range over intervals. A
hyper-rectangle H ⊆ X is represented as a vector of intervals ⟨I1, . . . , Id⟩ over R.

Given a decision tree t, we define its possible predictions over the hyper-
rectangle H as t(H) = {y ∈ Y | ∃x ∈ H : t(x) = y}. Note that computing t(H)
is straightforward by means of a recursive tree traversal. Specifically, if t = λ(y),
then t(H) = {y}. If instead t = σ(f, v, tl, tr), we define t(H) with H = ⟨I1, . . . , Id⟩
as follows:

t(H) =


tl(H) if If ∩ (v,+∞) = ∅
tr(H) if If ∩ (−∞, v] = ∅
tl(H) ∪ tr(H) otherwise

Finally, we extend predictions over hyper-rectangles from trees to tree ensem-
bles, noted F (H). The actual definition of F (H) depends on the approach used by
F to aggregate the individual tree predictions to produce the ensemble prediction.
For example, in the case of majority voting, we may let:

F (H) =

{
{y} if |{ti ∈ F | ti(H) = {y}}| > |F |/2
Y otherwise

For soundness, we require {y ∈ Y | ∃x ∈ H : F (x) = y} ⊆ F (H), i.e., the
set of the predictions F (H) includes all the predictions that may be assigned to
an instance in H. Proving that this requirement holds for the definition above is
straightforward.

In the following, given two intervals, we define their sum I + J as the interval
whose lower bound is the sum of the lower bounds and whose upper bound is the
sum of the upper bounds; we require the bounds to be closed if and only if both
the added bounds are closed. For example, [1, 3] + (4, 6] = (5, 9]. Moreover, given
two hyper-rectangles, we define their sum H + H ′ as the pointwise sum of their
components (intervals).

10.4.2 Decision Tree Stability Analysis

Our analysis operates by annotating each node of a decision tree with a set of sym-
bolic attacks, which represent a set of instances along with their relevant adversarial

198 CHAPTER 10. BEYOND ROBUSTNESS

x1 ≤ 10

1

x2 ≤ 5

2

+1

3

-1

4

x2 ≤ 8

5

+1

6

-1

7

Figure 10.2: An example of the internal structure of a decision tree.

perturbations. As for the work in Chapter 9, most adversarial perturbations are
not relevant for the stability analysis of decision trees because such classifiers op-
erate by means of thresholds; hence, only attacks that allow for traversing some
threshold might lead to instability [35]. Formally, a symbolic attack s has the
shape ⟨Ipre1 , . . . , Ipred ⟩ ▷ ⟨Ipost1 , . . . , Ipostd ⟩k, where each Iprei , Ipostj is an interval on R
and k ∈ N. Intuitively, s identifies the set of instances located within the hyper-
rectangle ⟨Ipre1 , . . . , Ipred ⟩, called the pre-image of the symbolic attack, along with
their adversarial perturbations located within the hyper-rectangle ⟨Ipost1 , . . . , Ipostd ⟩,
called the post-image of the symbolic attack; the cost of such adversarial pertur-
bations is bounded above by k. We make use of symbolic attacks to identify which
nodes of the decision tree can be traversed by a set of instances as the result of
adversarial perturbations against them; we require that when k = 0, the pre-image
and the post-image coincide, i.e., the symbolic attack captures the case where no
adversarial perturbation has taken place. We write s.pre, s.post, and s.cost to
project the pre-image, the post-image, and the cost of s, respectively.

Before presenting the formal details, we present the analysis at work on the
decision tree of Figure 10.2 built on a feature space with two features. We assume
an attacker who can manipulate at most one feature by adding a perturbation δ ∈
[−1, 1]. Formally, this is represented by having Iatk1 = Iatk2 = [−1, 1], c1 = c2 = 1
and b = 1. The analysis result for node annotations is presented in Table 10.1.

The observations we can draw from the results of this analysis are the follow-
ing: Node 1 is the root of the tree; hence, the analysis cannot conclude anything
about instances traversing the node, i.e., the symbolic attack in the node anno-
tation models that all instances in the feature space traverse the root, no matter
what the attacker does. Node 2, instead, is more interesting because the analysis
captures two cases via two symbolic attacks: an instance x might traverse the node
either because x1 ≤ 10 and the attacker does nothing, or because x1 ∈ (10, 11] is
adversarially manipulated into the interval (9, 10]. Note that, in the second case,
the symbolic attack is assigned a cost of 1, which allows us to track that no further

10.4. CONTRIBUTION 2: DATA-INDEPENDENT STABILITY ANALYSIS199

Table 10.1: Tree annotation results for the decision tree in Figure 10.2

Node Symbolic Attacks

1 ⟨(−∞,+∞), (−∞,+∞)⟩▷ ⟨(−∞,+∞), (−∞,+∞)⟩0

2
⟨(−∞, 10], (−∞,+∞)⟩▷ ⟨(−∞, 10], (−∞,+∞)⟩0
⟨(10, 11], (−∞,+∞)⟩▷ ⟨(9, 10], (−∞,+∞)⟩1

3
⟨(−∞, 10], (−∞, 5]⟩▷ ⟨(−∞, 10], (−∞, 5]⟩0
⟨(−∞, 10], (5, 6]⟩▷ ⟨(−∞, 10], (4, 5]⟩1
⟨(10, 11], (−∞, 5]⟩▷ ⟨(9, 10], (−∞, 5]⟩1

4
⟨(−∞, 10], (5,+∞)⟩▷ ⟨(−∞, 10], (5,+∞)⟩0
⟨(−∞, 10], (4, 5]⟩▷ ⟨(−∞, 10], (5, 6]⟩1
⟨(10, 11], (5,+∞)⟩▷ ⟨(9, 10], (5,+∞)⟩1

5
⟨(10,+∞), (−∞,+∞)⟩▷ ⟨(10,+∞), (−∞,+∞)⟩0
⟨(9, 10], (−∞,+∞)⟩▷ ⟨(10, 11], (−∞,+∞)⟩1

6
⟨(10,+∞), (−∞, 8]⟩▷ ⟨(10,+∞), (−∞, 8]⟩0
⟨(10,+∞), (8, 9]⟩▷ ⟨(10,+∞), (7, 8]⟩1
⟨(9, 10], (−∞, 8]⟩▷ ⟨(10, 11], (−∞, 8]⟩1

7
⟨(10,+∞), (8,+∞)⟩▷ ⟨(10,+∞), (8,+∞)⟩0
⟨(10,+∞), (7, 8]⟩▷ ⟨(10,+∞), (8, 9]⟩1
⟨(9, 10], (8,+∞)⟩▷ ⟨(10, 11], (8,+∞)⟩1

perturbations are possible because the attacker’s budget has run out. Even more
interesting is the case of node 3, where we have three possibilities. In particular,
an instance x might traverse the node in the following cases: i) x1 ≤ 10 and
x2 ≤ 5, hence no adversarial perturbation is needed, ii) x1 ≤ 10 and x2 ∈ (5, 6] is
manipulated into (4, 5], or iii) x1 ∈ (10, 11] is manipulated into (9, 10] and x2 ≤ 5.
We do not have a case where both features are manipulated because this would
exceed the attacker’s budget. A similar reasoning applies to the other nodes in
the tree. Once the tree has been annotated, it is possible to check stability by
inspecting the annotations in its leaves: we discuss this aspect of the analysis later
in the section.

Algorithm 6 describes the annotation function for decision trees. We assume
each node of the tree is enriched with an attribute sym, used to store a set of
symbolic attacks. The call Annotate(t, S) annotates the root of t with the set of
symbolic attacks S passed as a parameter (line 5), then uses S and the threshold
information in the root to generate the annotations for the roots of the left and
right sub-trees (lines 9-11); finally, the process goes down recursively (lines 12-

200 CHAPTER 10. BEYOND ROBUSTNESS

13). When the annotation function is initially invoked on the root of the decision
tree to analyse, we set S = {⟨(−∞,+∞)d⟩▷ ⟨(−∞,+∞)d⟩0} as explained in the
example.

Algorithm 6 Decision tree annotation

1: function Annotate(t, S)
2: Input
3: t : tree
4: S : symbolic attack set generated by the parent node

5: t.sym← S
6: if t = σ(f, v, tl, tr) then
7: Sl ← ∅
8: Sr ← ∅
9: for s ∈ S do
10: Sl ← Sl ∪RefineLeft(s, f, v)
11: Sr ← Sr ∪RefineRight(s, f, v)

12: Annotate(tl, Sl)
13: Annotate(tr, Sr)

The key part of the node annotation logic is implemented by the auxiliary
functions RefineLeft and RefineRight, defined in Algorithm 7 and Algorithm
8, respectively. Given a symbolic attack s, a feature f and the associated threshold
v from an internal node of the decision tree, the call RefineLeft(s, f, v) uses s to
generate a new set of symbolic attacks S for the root of the left sub-tree (initially
empty). Lines 13-19 account for the case where some instances in the post-image
of s already fall in the left sub-tree, i.e., the attacker does not need to spend budget
to manipulate the feature f so as to push some instances in the pre-image into
the left sub-tree. In this case, S is extended with a refined variant of s, where we
track that the feature f must belong to the interval (−∞, v] for the instances in the
post-image (line 14). Also the pre-image of s is refined in the left sub-tree: if f was
not attacked, we know that the feature f must belong to the interval (−∞, v] for
the instances in the pre-image as well (lines 15-16); otherwise, we still know that
the attack could not push instances beyond the maximum negative perturbation
δl < 0, hence the feature f must belong to the interval (−∞, v − min(0, δl)] for
the instances in the pre-image (lines 17-18). Lines 20-23, instead, cover the case
where some instances in the pre-image are close enough to the threshold v to be
pushed into the left sub-tree as the result of adversarial perturbations. In this case,
provided that the attacker still has enough budget to spend, S is extended with
a refined variant of s, where we update both the post-image and the pre-image

10.4. CONTRIBUTION 2: DATA-INDEPENDENT STABILITY ANALYSIS201

Algorithm 7 Refinement for the left sub-trees

1: function RefineLeft(s, f, v)
2: Input
3: s : symbolic attack
4: f : test node’s feature
5: v : test node’s threshold
6: Output
7: S : set symbolic attacks create by the split (v, f) of s

8: S ← ∅
9: ⟨Ipre1 , . . . , Ipred ⟩ ← s.pre
10: ⟨Ipost1 , . . . , Ipostd ⟩ ← s.post
11: k ← s.cost
12: [δl, δr]← Iatkf

13: if Ipostf ∩ (−∞, v] ̸= ∅ then
14: Jpost

f ← Ipostf ∩ (−∞, v]

15: if Ipref = Ipostf then
16: Jpre

f ← Ipref ∩ (−∞, v]
17: else
18: Jpre

f ← Ipref ∩ (−∞, v −min(0, δl)]

19: S ← S ∪ {⟨Ipre1 , . . . , Ipref−1, J
pre
f , Ipref+1, . . . I

pre
d ⟩ ▷

⟨Ipost1 , . . . , Ipostf−1, J
post
f , Ipostf+1, . . . , I

post
d ⟩k}

20: if Ipref = Ipostf ∧ δl < 0 ∧ Ipref ∩ (v, v − δl] ̸= ∅ ∧ k + cf ≤ b then

21: Jpost
f ← Ipostf ∩ (v + δl, v]

22: Jpre
f ← Ipref ∩ (v, v − δl]

23: S ← S ∪ {⟨Ipre1 , . . . , Ipref−1, J
pre
f , Ipref+1, . . . I

pre
d ⟩ ▷

⟨Ipost1 , . . . , Ipostf−1, J
post
f , Ipostf+1, . . . , I

post
d ⟩k+cf}

24: return S

to reflect their proximity to the threshold v. More precisely, given the maximum
negative perturbation δl < 0, we track that the feature f must belong to the
interval (v+ δl, v] for the instances in the post-image and to the interval (v, v− δl]
for the instances in the pre-image, otherwise crossing the threshold would not be
possible. The RefineRight function performs analogous reasoning for the right
sub-tree; hence, we omit a detailed explanation.

The stability analysis for decision trees is finally shown in Algorithm 9. The
call Analyze(t) leverages the results of the tree annotation function to return a
set of symbolic attacks U , identifying the portions of the feature space where the

202 CHAPTER 10. BEYOND ROBUSTNESS

Algorithm 8 Refinement for the right sub-trees

1: function RefineRight(s, f, v)
2: Input
3: s : symbolic attack
4: f : test node’s feature
5: v : test node’s threshold
6: Output
7: S : set symbolic attacks create by the split (v, f) of s

8: S ← ∅
9: ⟨Ipre1 , . . . , Ipred ⟩ ← s.pre
10: ⟨Ipost1 , . . . , Ipostd ⟩ ← s.post
11: k ← s.cost
12: [δl, δr]⟩ ← Iatkf

13: if Ipostf ∩ (v,+∞) ̸= ∅ then
14: Jpost

f ← Ipostf ∩ (v,+∞)

15: if Ipref = Ipostf then
16: Jpre

f ← Ipref ∩ (v,+∞)
17: else
18: Jpre

f ← Ipref ∩ (v −max(0, δr),+∞)

19: S ← S ∪ {⟨Ipre1 , . . . , Ipref−1, J
pre
f , Ipref+1, . . . I

pre
d ⟩ ▷

⟨Ipost1 , . . . , Ipostf−1, J
post
f , Ipostf+1, . . . , I

post
d ⟩k}

20: if Ipref = Ipostf ∧ δr > 0 ∧ Ipref ∩ (v − δr, v] ̸= ∅ ∧ k + cf ≤ b then

21: Jpost
f ← Ipostf ∩ (v, v + δr]

22: Jpre
f ← Ipref ∩ (v − δr, v]

23: S ← S ∪ {⟨Ipre1 , . . . , Ipref−1, J
pre
f , Ipref+1, . . . I

pre
d ⟩ ▷

⟨Ipost1 , . . . , Ipostf−1, J
post
f , Ipostf+1, . . . , I

post
d ⟩k+cf}

24: return S

decision tree t may be unstable. The function operates by looking for two leaves
with different class predictions such that: i) the first leaf contains a symbolic
attack s of cost 0, i.e., no adversarial perturbation was performed on the pre-
image of s, ii) the second leaf contains a symbolic attack s′ of cost greater than
0, i.e., the attacker manipulated the pre-image of s′, and iii) the pre-images of
the two symbolic attacks s, s′ partially overlap, i.e., there exist some instances
which might fall into a leaf with a different class than the original prediction due
to adversarial perturbations (lines 8-13). In this case, the intersection of the pre-
images identifies a portion of the feature space where the tree may be unstable.

10.4. CONTRIBUTION 2: DATA-INDEPENDENT STABILITY ANALYSIS203

Algorithm 9 Stability analysis for decision trees

1: function Analyze(t)
2: Input
3: t : tree
4: Output
5: U : set of symbolic attacks where t may be unstable

6: t← Annotate(t, {⟨(−∞,+∞)d⟩▷ ⟨(−∞,+∞)d⟩0})
7: U ← ∅
8: for λ(y) ∈ t do
9: for s ∈ {ŝ ∈ λ(y).sym | ŝ.cost = 0} do
10: for λ′(y′) ∈ t do
11: if y′ ̸= y then
12: for s′ ∈ {ŝ ∈ λ′(y′).sym | ŝ.cost > 0} do
13: if s.pre ∩ s′.pre ̸= ∅ then
14: s′′.pre← s.pre ∩ s′.pre
15: s′′.post← s′.post ∩ (s′′.pre+ ⟨Iatk1 , . . . , Iatkd ⟩)
16: s′′.cost← s′.cost
17: U ← U ∪ {s′′}
18: return U

The post-image of s′ is refined to capture that the adversarial perturbations cannot
push instances beyond the maximum allowed perturbation of the intersection of
the two pre-images (lines 14-17). This is a conservative approximation, which
accounts for all the possible adversarial perturbations. To exemplify the output of
the stability analysis, consider the node annotations in Table 10.1. The stability
analysis returns the symbolic attacks reported in Table 10.2.

The pre-images of these symbolic attacks identify the portions of the feature
space where the decision tree is unstable. It is interesting to observe that leaves 4
and 6 contribute two portions of the feature space where the tree may be unstable,
while leaves 3 and 7 only contribute one. The reason for this is that leaves 4 and
6 partially overlap on the values allowed for the second feature, i.e., the interval
(5, 8]. This means that it is possible to jump from leaf 4 to leaf 6 (and vice versa)
as the result of an attack targeting just the first feature, provided that the second
feature falls into (5, 8]. Conversely, leaves 3 and 7 have no overlap on any of the
two features; hence, an attack which manipulates just one feature cannot induce a
jump between these two leaves. As a final comment, notice that the post-images
are not needed at this stage of the analysis: we just collect them because they
support the analysis of tree ensembles in the next section.

204 CHAPTER 10. BEYOND ROBUSTNESS

Table 10.2: Tree stability analysis results for the decision tree in Figure 10.2 with
respect to the symbolic attacks in Table 10.1

Leaf node Symbolic Attacks

3 ⟨(−∞, 10], (4, 5]⟩▷ ⟨(−∞, 10], (5, 6]⟩1

4
⟨(−∞, 10], (5, 6]⟩▷ ⟨(−∞, 10], (4, 5]⟩1
⟨(9, 10], (5, 8]⟩▷ ⟨(10, 11], (4, 8]⟩1

6
⟨(10,+∞), (7, 8]⟩▷ ⟨(10,+∞), (8, 9]⟩1
⟨(10, 11], (5, 8]⟩▷ ⟨(9, 10], (5, 9]⟩1

7 ⟨(10,+∞), (8, 9]⟩▷ ⟨(10,+∞), (7, 8]⟩1

The soundness theorem for our analysis is given below. The theorem states that
all the instances x where t is unstable must fall in the pre-image of a symbolic
attack contained in the set U returned by the call Analyze(t). In other words, the
union of the pre-images of the symbolic attacks in U can only over-approximate
the portion of the feature space where t is unstable, i.e., t must be stable on all the
instances located outside such area. This allows us to compute the set X ′

S where
t is stable by subtracting the union of the pre-images of U from the full feature
space X .

Theorem 1 (Soundness of Tree Analysis). The call Analyze(t) returns a set of
symbolic attacks U such that, for every instance x ∈ X and every adversarial
instance z ∈ A(x) such that t(z) ̸= t(x), there exists s ∈ U such that x ∈ s.pre
and z ∈ s.post.

We conjecture that the analysis is not only sound but also complete, i.e., for
every s ∈ U there exist x ∈ X and z ∈ A(x) such that x ∈ s.pre, z ∈ s.post
and t(z) ̸= t(x). However, we do not formally prove this result because it has
limited practical value: in particular, single decision trees are very rarely used in
practice and have to be combined in an ensemble to provide enough predictive
power. Since the ensemble analysis in the next section is sound but not complete,
the conjectured completeness result would not generalise to practical cases.

10.4.3 Forest Stability Analysis

We now discuss how the stability analysis for decision trees can be generalised to
tree ensembles by means of an iterative algorithm (Algorithm 10). The algorithm
operates by refining a set of candidates C where the ensemble F may be unstable.
Initially, the set C is the union of the symbolic attacks computed for the individual

10.4. CONTRIBUTION 2: DATA-INDEPENDENT STABILITY ANALYSIS205

Algorithm 10 Stability analysis for tree ensembles

1: function Analyze(F)
2: Input
3: F : forest
4: Output
5: C ∪ E : refined set of symbolic attacks where F may be unstable

6: C ← ∅
7: for ti ∈ F do
8: C ← C ∪Analyze(ti)

9: E ← ∅
10: while stopping condition is not met do
11: for s ∈ C do
12: if ∃y : F (s.pre) = F (s.post) = {y} then
13: C ← C \ {s}
14: else
15: if F (s.pre) ∩ F (s.post) ̸= ∅ then
16: C ← (C \ {s}) ∪ Split(s)
17: else
18: C ← C \ {s}
19: E ← E ∪ {s}
20: return C ∪ E

trees ti ∈ F (lines 6-8) by Algorithm 6. The algorithm also keeps track of an
initially empty set of symbolic attacks E where the analysis has ended because no
further refinement of them is possible (line 9).

Each iteration of the algorithm inspects all the candidates s ∈ C, distinguishing
three cases (lines 10-19). If F predicts the same label y over both the pre-image
and the post-image of s, then F is stable on that portion of the feature space and
s is removed from C (lines 12-13). Otherwise, the algorithm checks whether the
predictions performed by F over the pre-image and the post-image of s share some
common elements. If this is the case, then F may be stable on a subset of the pre-
image of s, yet this cannot be concluded at the current iteration; hence, s is refined
by splitting it into a set of smaller symbolic attacks (lines 15-16). Any splitting
criterion would work as long as it satisfies the soundness condition defined in the
theorem below. If, instead, the predictions performed by F over the pre-image
and the post-image of s are disjoint, there is no way of proving that F is stable
even on a subset of the pre-image of s; hence s is moved from C to E to avoid
further refinements (lines 18-19).

206 CHAPTER 10. BEYOND ROBUSTNESS

The algorithm may implement an arbitrary stopping condition, e.g., C is empty,
or a maximum number of iterations has been performed, as we do in our imple-
mentation. Similarly to the stability analysis for decision trees, the algorithm
eventually returns a set of symbolic attacks C ∪E, whose union of the pre-images
over-approximates the portion of the feature space where F is unstable. The sound-
ness of the analysis is formalised by the following theorem, which is the natural
generalisation to ensembles of Theorem 1.

Theorem 2 (Soundness of Tree Ensemble Analysis). Assume the following hy-
potheses:

• F (H) is sound, i.e., it satisfies the following: {y ∈ Y | ∃x ∈ H : F (x) =
y} ⊆ F (H).

• The splitting procedure is sound, i.e., for all symbolic attacks s, if there exist
x ∈ X and z ∈ A(x) such that x ∈ s.pre and z ∈ s.post, then there exists
s′ ∈ Split(s) such that x ∈ s′.pre and z ∈ s′.post.

The call Analyze(F) returns a set of symbolic attacks C ∪ E such that,
for every instance x ∈ X and every adversarial instance z ∈ A(x) such that
F (z) ̸= F (x), there exists s ∈ C ∪ E such that x ∈ s.pre and z ∈ s.post.

Note that the ensemble analysis is sound but not complete for generic reasons,
the most important one being that even the traditional robustness verification
problem for tree ensembles is already NP-hard [92] and computing all the equiva-
lence classes induced by an ensemble quickly becomes infeasible in practice [164].
We expect a complete analysis to be feasible for restricted settings, e.g., for specific
attackers.

10.5 Experimental Setup

In the experimental phase, we compare the presented resilience metric with ro-
bustness to demonstrate how robustness creates a false sense of security due to
its definition. Robustness evaluates the model’s strength to evasion attacks based
solely on instances from a given test set, without considering possible neighbour-
hood instances of those in the test set. The experiments designed in this Section
aim to answer the following research questions: Do the theoretical shortcomings
of robustness manifest in practice? Can accurate resilience estimates be computed
using our data-independent stability analysis, and are these estimates practically
useful? What is the impact of the neighbour parameter ε on the resilience esti-
mates that we can compute?

10.5. EXPERIMENTAL SETUP 207

Table 10.3: Datasets properties.

dataset #features #instances perturbation δ

Diabetes 8 768 ± 0.03
Cod-RNA 8 59,535 ± 0.07
Breast Cancer O 10 683 ± 0.15
Sensorless 1 vs. 11 (1 vs. 11) 48 10,638 ± 0.20

To demonstrate the superiority of resilience over robustness, we implemented
the data-independent stability analysis defined in Section 10.4. Through the data-
independent stability analyser, we experimentally assess the effectiveness of re-
silience on four publicly available datasets: Diabetes, Cod-RNA, Breast Can-
cer O, and Sensorless. Furthermore, we estimate the robustness and resilience
of both standard and robust tree models trained using a state-of-the-art adversarial
machine learning algorithm.

In Table 10.3, we summarise the main properties of the dataset, which were
introduced previously in Section 8.2.5. These datasets have been employed in
previous research on the robustness verification of tree-based models, as seen in
Chen et al.’s work [46]. Due to our focus on binary classification, we create a
new dataset named Sensorless 1 vs. 11 by selecting classes 1 and 11 from the
original dataset Sensorless. For the sake of simplicity, hereinafter, we refer to
Sensorless 1 vs. 11 as Sensorless, as it is the only version of the Sensorless
dataset used in the experiments. Furthermore, we refer to Breast Cancer O
as Breast Cancer.

The experimental phase aims to verify the usefulness of the newly introduced
metric, which assesses the strength (security) of classification models under attack.
For this analysis, there are no baselines; however, we use the robustness metric
defined in Section 8.2.3.3 as a competitor. The robustness metric estimates the
model’s strength under attack, but we claim that its estimate provides a false
sense of security. Furthermore, regarding the effectiveness of the data-independent
stability analyser to estimate resilience, since we introduce a new metric, there is
no competitor with which to compare the accuracy of our solution. For this reason,
we designed a series of experiments to prove that our analyser is indeed accurate.

10.5.1 Baselines and Implementation

Data-Independent Stability Analyser: In the experiments, we leverage the
output of the stability analysis to calculate lower bounds for robustness (R̂) and
resilience (R̂) for a specific model and test set, as discussed in Section 10.3.2.
Therefore, an efficient and accurate implementation of the data-independent sta-

208 CHAPTER 10. BEYOND ROBUSTNESS

bility analyser is crucial for the successful execution of our experiments.
Concerning the implementation of the data-independent stability analysis for-

malised in Section 10.4, we implemented our stability analyser for decision trees
and decision tree ensembles based on majority voting. The implementation is en-
tirely in the C++ programming language and parallelised on CPU architecture.
The code of the analyser can be found at the following footnote1.

We discuss below selected aspects of the implementation, which is a rather
direct translation of our pseudo-code. A first point to note is that the set of
candidates C is implemented by means of a min priority queue, and only the top
k symbolic attacks can be split at each loop iteration (lines 11-19 of Algorithm 10)
to mitigate the growth of C. The default value of k is 0.05 · |C|.

The priority queue is ordered according to the following criterion: each symbolic
attack s is first assigned a pair (nc, nu), where nc is a counter used to keep track
of how many splits have been performed to produce s and nu is the number of
“undecided” trees ti such that |ti(s.pre)| > 1; pairs are then ordered according to
the standard lexicographic order. In this heuristics, nc acts as a penalisation factor
to ensure that the algorithm does not split the same symbolic attacks too many
times but rather tries to process all the symbolic attacks at least once, even when
the number of iterations is relatively small. Symbolic attacks with the same value
of nc are split by prioritising symbolic attacks with a small number of undecided
trees nu because they are intuitively and likely easier to certify and should be
analysed earlier.

A second relevant aspect to discuss is the implementation of the splitting func-
tion (line 16 of Algorithm 10). Given the symbolic attack s, our implementation of
Split(s) operates as follows: it first identifies a feature f and a threshold v such
that v falls in the f -th component of s.pre; then, if Iatkf = [δl, δr], it splits s.pre
in (at most four) hyper-rectangles based on the thresholds v + δl, v, v + δr. For
example given the interval (a, b], if v, v+δl and v+δr are inside (a, b], the Split(s)
function divides the interval in the following four intervals: (a, v + δl], (v + δl, v],
(v, v + δr] and (v + δr, b]. Finally, it uses these intervals as the pre-images of the
new symbolic attacks, computing the corresponding post-images by intersecting
s.post with the maximum perturbation applicable to the pre-images. It is easy
to show that this implementation enjoys the required soundness condition for the
splitting procedure.

Finally, we note that Algorithm 10 can be parallelised by partitioning C across
different threads and by joining the analysis results at the end. In particular, we
first build the priority queue C, and then we distribute it across threads using a
round-robin algorithm, which is useful to ensure that no thread is penalised by
the prevalence of symbolic attacks which are expected to be hard to analyse. This

1https://github.com/FedericoMarcuzzi/resilience-verification

https://github.com/FedericoMarcuzzi/resilience-verification

10.5. EXPERIMENTAL SETUP 209

scheme ensures a deeper exploration of C when the analysis terminates before
convergence after a fixed number of iterations. Our implementation supports a
configurable number of threads, and in the experiments, we fixed this value to 20
threads.

Learning Algorithms: In the experiments, we compare resilience and robust-
ness on models trained without considering the attacker (standard models) and
while considering the attacker (robust models). Specifically, we employ Random
Forest to train standard models and TREANT to train robust models. For train-
ing Random Forest, we utilise the open-source Scikit-learn library [24]. While for
TREANT, we use the implementation provided by Calzavara et al [36], and the
corresponding code can be found at the following footnote2.

Below, we provide details of the learning algorithms.

• Random Forest (RF): The RF algorithm, as defined by Breiman [20], is
not explicitly designed to be robust against evasion attacks; however, it
is known to exhibit some level of robustness thanks to the ensembling of
several decision trees. As in the original algorithm, each tree is trained on a
bootstrap sample of the dataset and with feature sampling of size

√
|F| at

each node.

• TREANT: TREANT is an algorithm designed for training robust models
against evasion attacks. The family of attacks handled by TREANT is very
general and includes the evasion attacks generated by the adversary’s model
defined in Section 10.2. TREANT is intended to train robust decision trees
against evasion attacks. In the paper proposed by Calzavara et al. in [36],
it is demonstrated that to increase robustness, it is possible to ensemble the
robust trees to create a robust forest.

To train the models, we divided each dataset into train and test sets according
to an 80%-%20 scheme with stratified random sampling. In this work, we do not
use validation since we are not interested in directly comparing the robustness
among models trained by different learning algorithms (i.e. RF and TREANT).
We are rather interested in the behaviour of resilience and robustness with respect
to the structure of the ensembles: robust training or not, the number of trees in
the ensemble and the ensemble trees’ depth.

To compare the feature perturbation given by δ and the size of the neigh-
bourhood set N modelled by ε across different features, for each dataset, we nor-
malise each feature in the range [0, 1]. For each classifier, we leverage the test

2https://github.com/FedericoMarcuzzi/TREANT

https://github.com/FedericoMarcuzzi/TREANT

210 CHAPTER 10. BEYOND ROBUSTNESS

set Dtest to compute different measures: accuracy ACC, robustness R, its under-
approximation R̂, and the under-approximation of resilience R̂. The robustness
R is computed using the exact brute-force algorithm BF defined di Section 9.4.1,
while R̂ and R̂ are under-approximations computed by our data-independent sta-
bility analysis defined in Section 10.3.2.

Following the definition of the adversary’s model provided by Definition 10,
for each feature f ∈ F , we fix the cost cf = 1. Consequently, with a budget of
b, the attacker can attack a maximum of b features. Furthermore, in Table 10.3,
we report, for each dataset, the values of the perturbation δ. The attacker can
add to each feature f being attacked a perturbation sampled from the interval
Iatkf = [−δ,+δ]. The value of δ depends on the dataset because different datasets
are drawn from different distributions. Hence, attacks that are effective on models
trained over a given dataset may be too strong or too weak for models trained
on a different dataset [49]. Finally, when estimating resilience, we assume the
neighborhood N(x) = {x ′ ∈ X | ||x ′ − x ||∞ ≤ ε} for a given value of ε defined in
the experiments. Observe that the actual resilience R is unknown, and only the
estimate R̂ can be computed by our analysis.

10.6 Main Results

In this section, we present the main results obtained in this study. The section
primarily focuses on the outcomes of experiments aimed at assessing whether ro-
bustness is an effective metric for estimating the security of machine learning mod-
els under attack. Additionally, it examines the ability of the analyser to provide
an accurate approximation of resilience and whether this estimate offers a more
reliable assessment of security compared to robustness.

10.6.1 Shortcomings of Robustness

We set up the first experiment to understand whether the shortcomings of ro-
bustness identified in theory might also occur in practical scenarios. To do that,
for each dataset, we use the original test set Dtest to craft 100 synthetic test sets
D1

test, . . . ,D100
test obtained by replacing each instance x ∈ Dtest with a randomly sam-

pled instance x ′ ∈ N(x). We then compute the robustness of the trained classifiers
over all the test sets Di

test, reporting the best and worst results to understand to
which extent a “lucky” sample of the data distribution might give a false sense
of security. To ensure that the synthetic test sets are still representative of the
same data distribution used for training, we only consider cases where the classifier
roughly preserves the same accuracy computed on the original test set Dtest.

Table 10.4 and Table 10.5 present the experimental results of our evaluation

10.6. MAIN RESULTS 211

Table 10.4: Shortcomings of robustness on standard models, for fixed b = 1.

Dataset ε ACC ACCmin ACCmax %∆ACC R Rmin Rmax %∆R

Diabetes

0.01 71.4 70.8 72.1 1.3 64.9 64.3 66.2 1.9
0.02 71.4 70.8 71.4 0.6 64.9 63.0 66.2 3.2
0.03 71.4 68.8 71.4 2.6 64.9 63.6 68.2 4.6
0.04 71.4 68.8 72.7 3.9 64.9 63.0 70.1 7.1

Cod-RNA

0.01 77.5 77.4 77.5 0.1 68.6 67.6 69.0 1.4
0.02 77.5 77.3 77.5 0.2 68.6 66.5 68.6 2.1
0.03 77.5 77.3 77.5 0.2 68.6 65.7 68.6 2.9
0.04 77.5 76.8 77.5 0.7 68.6 65.0 68.6 3.6

Breast Cancer

0.05 94.8 94.8 94.8 0.0 92.6 92.6 94.1 1.5
0.06 94.8 93.3 95.6 2.3 92.6 91.1 95.6 4.5
0.07 94.8 94.1 95.6 1.5 92.6 90.4 95.6 5.2
0.08 94.8 93.3 97.0 3.7 92.6 90.4 96.3 5.9

Sensorless

0.03 100.0 100.0 100.0 0.0 98.5 98.5 99.6 1.1
0.04 100.0 100.0 100.0 0.0 98.5 98.5 99.6 1.1
0.05 100.0 100.0 100.0 0.0 98.5 98.1 99.3 1.2
0.06 100.0 100.0 100.0 0.0 98.5 97.5 98.9 1.4

for standard and robust models, respectively. For this experiment, we assume an
attacker with budget b = 1. The tables report for each dataset the worst robustness
Rmin and the best robustness Rmax computed over all the generated synthetic test
sets for different values of ε, as well as the percentage robustness gap %∆R between
the two. Furthermore, we also report the corresponding values of accuracy noted
as ACCmin and ACCmax, respectively and their percentage accuracy gap %∆ACC.
The tables also include the accuracy ACC and the robustness R computed on the
original test set Dtest. Finally, we mark in bold when the gap %∆R is at least 4%.
The experiments are performed on ensembles of size |F | = 7.

The results show that the size of the interval [Rmin,Rmax] is significant in
many cases and may reach 7% for the highest values of ε, while the size of the
interval [ACCmin,ACCmax] is relatively small in comparison, spanning at most
4%. For example, the robustness of the standard model trained over the Breast
Cancer dataset suffers from a fluctuation of around 5% for ε = 0.07, while the
corresponding accuracy gap fluctuates at just 1%. Our experiments show that
robustness is generally more sensitive to small amounts of noise than accuracy.
Remarkably, this observation applies to both standard and robust models. Robust
models provide higher robustness than standard models; however, the interval
[Rmin,Rmax] may have a significant size also for them, i.e., roughly 6% in the

212 CHAPTER 10. BEYOND ROBUSTNESS

Table 10.5: Shortcomings of robustness on robust models, for fixed b = 1.

Dataset ε ACC ACCmin ACCmax %∆ACC R Rmin Rmax %∆R

Diabetes

0.01 72.7 72.1 72.7 0.6 71.4 67.5 71.4 3.9
0.02 72.7 71.4 74.0 2.6 71.4 66.9 72.1 5.2
0.03 72.7 72.1 74.7 2.6 71.4 66.9 72.7 5.8
0.04 72.7 70.8 74.7 3.9 71.4 67.5 73.4 5.9

Cod-RNA

0.01 75.0 74.8 75.3 0.5 71.4 71.0 72.1 1.1
0.02 75.0 74.9 75.8 0.9 71.4 71.1 72.5 1.4
0.03 75.0 75.0 76.0 1.0 71.4 70.5 72.3 1.8
0.04 75.0 75.2 76.1 0.9 71.4 70.3 72.3 2.0

Breast Cancer

0.05 97.0 93.3 96.3 3.0 95.6 91.9 96.3 4.4
0.06 97.0 93.3 97.0 3.7 95.6 91.1 96.3 5.2
0.07 97.0 92.6 96.3 3.7 95.6 91.1 96.3 5.2
0.08 97.0 92.6 95.6 3.0 95.6 90.4 95.6 5.2

Sensorless

0.03 100.0 99.9 100.0 0.1 99.9 99.5 99.9 0.4
0.04 100.0 99.6 100.0 0.4 99.9 99.0 99.9 0.9
0.05 100.0 99.3 100.0 0.7 99.9 97.9 99.9 2.0
0.06 100.0 99.0 100.0 1.0 99.9 96.2 99.9 3.7

worst case. This shows that a security evaluation based on robustness may give a
false sense of security for both standard and robust models. We also remark that
our experiment still provides a conservative account of the actual limitations of
robustness, being based on just 100 synthetic test sets: the actual gap between
Rmin and Rmax within the neighbourhood N may be larger in practice.

10.6.2 Effectiveness of Resilience Verification

We now investigate the effectiveness of our resilience verification technique. To do
that, we would like to show that our estimate R̂ is an accurate under-approximation
of the actual resilience R and that resilience significantly mitigates the shortcom-
ings of robustness. Unfortunately, since the actual value of resilience is unknown,
we can only provide a best-effort answer to the first point. Our evaluation is based
on two independent experiments:

1. In the first one, we operate by comparing the similarity between the actual
robustness R and its estimate R̂ computed by our analysis. We consider
the similarity between R and R̂ as a proxy for the precision of the stability
analysis underlying our resilience verification technique: the more R and R̂
are close to each other, the more the stability analysis is effective at detecting

10.6. MAIN RESULTS 213

the portions of the feature space where the classifier is stable, which suggests
that also the estimate R̂ is precise, being based on the same stability analysis.

2. In the second one, we refer to the experiment in the previous section, and
we observe that if a classifier is not robust on the instance x ′ belonging to
some Di

test with i ∈ [1, 100], by construction, there must exist x ∈ Dtest such
that the classifier is not robust on at least one instance in N(x). This allows
the construction of an additional test set Dtest, corresponding to the “most
unlucky” sampling within the neighbourhood N of the original Dtest, i.e., the
one with the lowest robustness R. The measure R is interesting because it is
based on an exact robustness verification technique: if R is close to R̂, then
we have a proof that most instances where the classifier is not considered
resilient by our analysis are indeed insecure with respect to some evasion
attacks.

Note that the second experiment does not just prove the precision of our ap-
proximated resilience verification technique, but it also gives a clear security in-
terpretation of the benefits of resilience over robustness.

Does Resilience Provide a Better Security Estimate than Robustness?
Table 10.6 and Table 10.6 show the experimental results of our evaluation for
standard and robust models, respectively, with an attacker’s budget b = 1. The
results highlight that the estimate R̂ is a rather precise under-approximation of the
actual robustness R: in particular, for individual decision trees R̂ always coincides
with R. As for tree ensembles, the gap between the two measures increases, yet
it is still quite small (roughly 2%) for standard models and most often negligible
for robust models; hence, we expect that also R̂ is a reasonably accurate estimate
of the actual resilience R. The table also shows that the gap between R and R̂
may be quite significant, both for standard and robust models, often reaching a
value of around 6% and even reaching 10% or more in some cases. We highlight
in bold the cases where the gap between R and R̂ is at least 5%. Remarkably, it
is apparent that the resilience estimate R̂ provides a much more realistic security
assessment than robustness because the value of R is much closer to R̂ than to
R in the very large majority of cases. Since R captures effective evasion attacks
against instances within close neighbourhoods of the test set, this confirms that
R̂ is not overly conservative in practice.

To further substantiate our claims, Figure 10.3 shows how robustness is affected
when varying the number of synthetic datasets used to construct Dtest, which
was built from 100 datasets in our experiments. We performed this analysis with
standard models with 5 trees and depth 3 trained on Sensorless and Cod-RNA
datasets. In particular, the figure plots how the value of R changes when varying

214 CHAPTER 10. BEYOND ROBUSTNESS

Table 10.6: Computed measures for different datasets and Standard Models (for
fixed b = 1)

dataset ε |F | depth ACC R R̂ R R̂

Diabetes 0.01

1 3 67.5 62.3 62.3 62.3 62.3
1 5 72.1 63.6 63.6 61.7 61.7
1 7 72.7 61.0 61.0 53.9 53.9

5 3 70.8 66.2 64.3 65.6 63.6
7 3 71.4 64.9 63.0 63.6 62.3
9 3 74.7 65.6 63.0 62.3 61.7

Cod-RNA 0.01

1 3 77.4 68.3 68.3 63.8 63.7
1 5 87.4 43.3 43.3 33.4 33.0
1 7 80.4 57.5 57.5 47.4 47.2

5 3 77.5 68.6 67.2 63.9 62.1
7 3 77.5 68.6 66.6 64.0 61.2
9 3 76.9 67.7 66.3 62.5 60.5

Breast Cancer 0.05

1 3 94.8 90.4 90.4 87.4 87.4
1 5 95.6 91.1 91.1 87.4 87.4
1 7 94.8 90.4 90.4 86.7 86.7

5 3 94.1 92.6 90.4 90.4 86.7
7 3 94.8 92.6 91.1 92.6 88.1
9 3 96.3 94.1 91.9 93.3 88.9

Sensorless 0.03

1 3 95.3 76.3 76.3 46.1 46.1
1 5 100.0 93.3 93.3 40.1 39.9
1 7 100.0 93.3 93.3 40.1 39.9

5 3 100.0 97.8 97.3 91.8 91.2
7 3 100.0 98.5 97.7 93.5 91.2
9 3 100.0 99.2 97.7 94.2 90.5

10.6. MAIN RESULTS 215

Table 10.7: Computed measures for different datasets and Robust Models (for
fixed b = 1)

dataset ε |F | depth ACC R R̂ R R̂

Diabetes 0.01

1 3 68.2 64.3 64.3 64.3 64.3
1 5 67.5 63.6 63.6 63.0 63.0
1 7 69.5 67.5 67.5 63.6 63.6

5 3 72.7 71.4 70.1 67.5 66.2
7 3 72.7 71.4 70.8 67.5 66.2
9 3 75.3 74.0 72.7 69.5 68.8

Cod-RNA 0.01

1 3 75.0 71.4 71.4 69.8 69.8
1 5 81.0 70.3 70.3 64.3 64.1
1 7 81.0 70.0 70.0 63.7 63.4

5 3 75.2 71.5 70.7 69.8 69.1
7 3 75.0 71.4 71.3 69.8 69.7
9 3 75.0 71.4 71.3 69.8 69.7

Breast Cancer 0.05

1 3 94.8 94.1 94.1 85.9 85.9
1 5 95.6 94.1 94.1 79.3 79.3
1 7 95.6 94.1 94.1 79.3 79.3

5 3 97.8 94.8 94.1 88.9 88.1
7 3 97.0 95.6 94.1 88.9 87.4
9 3 97.0 95.6 93.3 88.9 86.7

Sensorless 0.03

1 3 100.0 50.1 50.1 50.1 50.1
1 5 100.0 50.1 50.1 50.1 50.1
1 7 100.0 99.9 99.9 99.3 99.3

5 3 100.0 99.9 99.9 99.3 99.3
7 3 100.0 99.9 99.9 99.3 99.3
9 3 100.0 99.9 99.9 99.3 99.3

216 CHAPTER 10. BEYOND ROBUSTNESS

0 20 40 60 80 100

number of synthetic datasets

91.0

92.0

93.0

94.0

95.0

96.0

97.0

98.0
ro

b
u

st
n

es
s

R

R (ε = 0.03)

R̂ (ε = 0.03)

(a) Sensorless

0 20 40 60 80 100

number of synthetic datasets

62.0

63.0

64.0

65.0

66.0

67.0

68.0

R

R (ε = 0.01)

R̂ (ε = 0.01)

(b) Cod-RNA

Figure 10.3: Comparison of Robustness R to exact robustness R and estimated
resilience R̂ while varying the number of synthetic datasets used to create Dtest.

the number of synthetic datasets from zero to 100. This evaluation is conservative
because we consider the synthetic datasets Di

test in decreasing order of robustness.
The figure shows that less than 20 synthetic datasets are sufficient to have a
decrease in model robustness of approximately 5% for Sensorless (Figure 10.3a)
and 4% for Cod-RNA (Figure 10.3b), i.e., it is easy to find a neighbour instance
x ′ ∈ N(x) of an instance x ∈ Dtest for which the model is not robust. This finding
confirms that robustness is not a good measure to assess security against evasion
attacks. Moreover, even with a small number of synthetic datasets, the value of R
is closer to our approximated resilience R̂ rather than to the robustness R.

Is the Resilience Analyser Accurate for Large Neighbours? We finally
assess the role of the parameter ε on our resilience verification technique. For this
experiment, we focus only on robust models trained on the Diabetes dataset. In
particular, we set the attacker’s budget b = 1, and we compute different resilience
estimates for different values of ε. Of course, we expect resilience to decrease when
increasing the value of ε because the stability guarantees required on the classifier
become more demanding. Still, it is interesting to understand whether the quality

10.7. IN-DEPTH ANALYSIS 217

0.01 0.02 0.03 0.04 0.05

neighbourhood distance ε

60.0

62.0

64.0

66.0

68.0

70.0

an
al

ys
er

es
ti

m
at

es
R

R̂

Figure 10.4: Estimated resilience R̂ and robustness R for different values of ε.

of the resilience estimate R̂ is affected by the value of ε: to understand this, we
compare R̂ against R because we would like the two measures to be relatively
close to each other. Figure 10.4 plots how the values of the estimated resilience R̂
and R of ensembles of size 9 and depth 3 decreases when increasing ε from 0.01 to
0.05. The figure shows that R̂ and R are consistently close to each other, with a
maximum difference of 2%. This proves that the estimate of the resilience always
captures possible evasion attacks, i.e., the precision of our approximated analysis
does not downgrade when increasing the value of ε.

10.7 In-Depth Analysis

In this section, we delve into a comprehensive analysis of the efficiency of the
implementation of the data-independent stability analysis defined in Section 10.4.
Furthermore, we provide formal proofs establishing the correctness of the theorems
underlying the soundness of the data-independent stability analysis: given the
region of the feature space C ∪ E returned by Analyze(F), where test instances
might be unstable, all instances in the region X \ (C ∪ E) are proved stable.

218 CHAPTER 10. BEYOND ROBUSTNESS

10.7.1 Performance Evaluation

In this experiment, we delve into the performance details of our implementation
of the data-independent stability analyser when analysing ensembles of decision
trees. For this analysis, we focus only on ensembles of robust models (i.e., trained
with the TREANT algorithm) on the Diabetes dataset.

To better understand the analyses in this section, it is essential to recall that
assessing the performance of the ensemble analysis is more nuanced due to the
exponential complexity blowup underlying the verification of decision tree ensem-
bles [164]. Although our analyser was intentionally designed to support iterative
refinements, consequently, its performance both in terms of accurate estimates and
execution time depends crucially on the number of analysis iterations.

Hence, we are interested in examining the following three aspects: i) Under-
standing how much the analysis execution time (up to convergence) changes when
increasing the ensemble size. ii) Understanding how much the quality of the ro-
bustness and resilience estimates (i.e., R̂ and R̂) changes when increasing the
number of iterations while keeping the same ensemble size. iii) Finally, under-
standing how much the execution time of the analyser is affected by the attacker’s
budget b.

The first point provides insights into the scalability of the analysis to increas-
ingly larger models, while the second allows us to understand whether it is possible
to compute useful robustness and resilience estimates even when the analysis be-
comes intractable and the number of iterations is limited to forcefully stop the
analysis before convergence. Finally, the third point provides insights into the
efficiency of the analyser when considering attacks of different strengths. Below,
we present the results of the analyses conducted for each of these points.

Ensemble Size vs. Execution time Figure 10.5 presents the results of the
analysis addressing the first point: how the ensemble size affects the analyser’s
execution time. We analyse the change in execution time by increasing the en-
semble size from 9 to 17, with each tree in the ensemble having a depth of 3.
Small ensembles with 9 trees can be analysed in a matter of seconds, while larger
ensembles with 17 trees can be analysed in around 16 minutes. We consider this
result promising because the stability analysis is data-independent, i.e., it can be
computed just once and then applied to establish different properties on different
test sets. We expect the execution times to be further improvable by sacrificing
a bit of precision, e.g., by aggregating together symbolic attacks that are close to
each other in the feature space.

Iterations vs. Accurate Estimates Figure 10.6 illustrates the results of the
analysis addressing the second point: how the number of analyser iterations affects

10.7. IN-DEPTH ANALYSIS 219

9 11 13 15 17

ensemble size |F |

0

200

400

600

800

1000
an

al
ys

is
ex

ec
u

ti
on

ti
m

e
(s

ec
)

Figure 10.5: Execution time analysis by varying the ensemble size.

the accuracy of the robustness and resilience estimates. The plot depicts the
change in values of the estimates R̂ and R̂ of ensembles of 17 trees and depth 3
when increasing the number of analysis iterations. The figure reveals a desirable
trend, with a significant increase in the estimates of robustness and resilience in
the first 120 iterations before reaching a plateau. This indicates that reasonably
accurate estimates of robustness and resilience can be established even with a
limited number of iterations of the analysis. This is crucial for scalability, as
useful results can be obtained before analysis convergence. Indeed, our analyser
is designed to prioritise portions of the feature space that are intuitively easier to
prove as stable (or not).

Attacker’s Budget vs. Execution time The last experiment assesses the
third point: how the attacker’s budget b impacts the analyser’s execution time.
Specifically, we investigate how the analyser execution time changes for different
values of b when analysing an ensemble of 11 trees of depth 3 up to convergence.
The ensemble is trained with the TREANT robust learning algorithm on the
Diabetes dataset, assuming an attacker’s budget of 5. The results of the analysis
are shown in Figure 10.7. As we can see, the impact of the attacker’s budget on
the analyser’s execution time is much more limited than the impact of the size of
the ensemble. The execution times range from around 12 seconds to around 40

220 CHAPTER 10. BEYOND ROBUSTNESS

0 20 40 60 80 100 120 140 160 180 200

analysis iterations

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

an
al

ys
er

es
ti

m
at

es

R̂

R̂ (ε = 0.01)

Figure 10.6: Estimated robustness R̂ and resilience R̂ by varying the number of
analyser’s iterations.

seconds when varying the attacker’s budget from 1 to 5.

10.7.2 Proofs of Theorems

In this section, we present the correctness proofs for Theorem 1 and Theorem 2.
Theorem 1 concerns the soundness of the tree analysis Analyze(t) provided by
Algorithm 9. Instead, Theorem 2 addresses the soundness of the tree analysis
Analyze(F) provided by Algorithm 10.

10.7.2.1 Proof of Theorem 1

In this section, we provide the proof of the correctness of Theorem 1. The proof
leverages a key technical lemma (Lemma 1) formalising the soundness of the tree
annotation function in Algorithm 6. More specifically, we prove that the tree
annotation function always produces a well-annotated decision tree according to
the following definition.

Definition 12 (Well-Annotated Decision Tree). The node σ of the decision tree t
is well-annotated by the set of symbolic attacks S if and only if, for every instance
x ∈ X and every z ∈ A(x) such that σ is traversed in the prediction t(z), S

10.7. IN-DEPTH ANALYSIS 221

1 2 3 4 5

attacker’s budget b

15

20

25

30

35

40
an

al
ys

is
ex

ec
u

ti
on

ti
m

e
(s

ec
)

Figure 10.7: Execution time analysis by varying the attacker’s budget b.

contains an element ⟨Ipre1 , . . . , Ipred ⟩▷⟨Ipost1 , . . . , Ipostd ⟩k such that x ∈ ⟨Ipre1 , . . . , Ipred ⟩,
z ∈ ⟨Ipost1 , . . . , Ipostd ⟩ and k is the minimum cost to pay to make x traverse σ. We
say that the decision tree t is well-annotated if and only if all its nodes are well-
annotated by the set of symbolic attacks stored in their sym attribute.

Lemma 1 (Soundness of Tree Annotation). The call Annotate(t, S) returns a
well-annotated decision tree, provided that the root of t is well-annotated by S.

Proof of the correctness of Lemma 1. The proof is by induction on the depth of
the tree t. If the tree has depth 1, then it includes a single node, i.e., the root,
and the conclusion follows by the assumption that the root of t is well-annotated
by S. Otherwise, we have t = σ(f, v, tr, tr) for some feature f , threshold v and
sub-trees tl and tr. The function then computes two new sets of symbolic attacks
Sl and Sr before invoking Annotate(tl, Sl) and Annotate(tr, Sr). Hence, the
desired conclusion follows by inductive hypothesis, provided that we are able to
show that the roots of tl and tr are well-annotated by Sl and Sr respectively. We
just prove the former since the latter uses an equivalent reasoning.

Pick any instance x ∈ X and consider any z ∈ A(x), we observe that S
must contain an element s such that x ∈ s.pre, z ∈ s.post and s.cost = 0,
because all instances must traverse the root. Assume z(f) ≤ v, we prove that
RefineLeft(s, f, v) returns a set of symbolic attacks S ′

l ⊆ Sl such that there

222 CHAPTER 10. BEYOND ROBUSTNESS

exists s′ ∈ S ′
l such that x ∈ s′.pre, z ∈ s′.post and s′.cost is the minimum cost to

pay to make x traverse the left child of the root. Assume s.pre = ⟨Ipre1 , . . . , Ipred ⟩,
s.post = ⟨Ipost1 , . . . , Ipostd ⟩ and Iatkf = [δl, δr], we discriminate four cases:

• If Ipref = Ipostf and x(f) ≤ v, we leverage the observation that z ∈ s.post and

z(f) ≤ v, hence the condition Ipostf ∩ (−∞, v] ̸= ∅ at line 13 must be satisfied.
In this case, S ′

l must contain an s′′ such that:

– s′′.pre = ⟨Ipre1 , . . . , Ipref−1, I
pre
f ∩ (−∞, v], Ipref+1, . . . , I

pre
d ⟩

– s′′.post = ⟨Ipost1 , . . . , Ipostf−1, I
post
f ∩ (−∞, v], Ipostf+1, . . . , I

post
d ⟩

– s′′.cost = 0

The conclusion follows from the observation that s′′ satisfies the three re-
quired conditions on s′.

• If Ipref = Ipostf and x(f) > v, we leverage the observation that z ∈ A(x) and

z(f) ≤ v. This implies that δl < 0, x(f) ∈ (v, v − δl] and z(f) ∈ (v + δl, v];
moreover, we must have cf ≤ b. By combining all this information and the
observation that s.cost = 0, we conclude that the condition at line 14 must
be satisfied. In this case, S ′

l must contain an s′′ such that:

– s′′.pre = ⟨Ipre1 , . . . , Ipref−1, I
pre
f ∩ (v, v − δl], I

pre
f+1, . . . , I

pre
d ⟩

– s′′.post = ⟨Ipost1 , . . . , Ipostf−1, I
post
f ∩ (v + δl, v], I

post
f+1, . . . , I

post
d ⟩

– s′′.cost = cf

The conclusion follows from the observation that s′′ satisfies the three re-
quired conditions on s′.

• If Ipref ̸= Ipostf and x(f) ≤ v, we leverage the observation that z ∈ s.post and

z(f) ≤ v, hence the condition Ipostf ∩ (−∞, v] ̸= ∅ at line 13 must be satisfied.
In this case, S ′

l must contain an s′′ such that:

– s′′.pre = ⟨Ipre1 , . . . , Ipref−1, I
pre
f ∩ (−∞, v −min(0, δl)], I

pre
f+1, . . . , I

pre
d ⟩

– s′′.post = ⟨Ipost1 , . . . , Ipostf−1, I
post
f ∩ (−∞, v], Ipostf+1, . . . , I

post
d ⟩

– s′′.cost = k

The conclusion follows from the observation that s′′ satisfies the three re-
quired conditions on s′.

10.7. IN-DEPTH ANALYSIS 223

• If Ipref ̸= Ipostf and x(f) > v, we leverage the observation that z ∈ A(x) and

z(f) ≤ v. This implies that δl < 0, x(f) ∈ (v, v − δl] and z(f) ∈ (v + δl, v].
We then observe that z ∈ s.post and z(f) ≤ v, hence the condition Ipostf ∩
(−∞, v] ̸= ∅ at line 13 must be satisfied. In this case, S ′

l must contain an s′′

such that:

– s′′.pre = ⟨Ipre1 , . . . , Ipref−1, I
pre
f ∩ (−∞, v −min(0, δl)], I

pre
f+1, . . . , I

pre
d ⟩

– s′′.post = ⟨Ipost1 , . . . , Ipostf−1, I
post
f ∩ (−∞, v], Ipostf+1, . . . , I

post
d ⟩

– s′′.cost = k

The conclusion follows from the observation that s′′ satisfies the three re-
quired conditions on s′.

We now move back to the proof of the theorem. Consider an instance x and an
adversarial perturbation z ∈ A(x) such that t(z) ̸= t(x). This means that there
exist two leaves λ(y) and λ′(y′) with y ̸= y′ such that t(x) = y and t(z) = y′. By
Lemma 1, t must be well-annotated after line 5, hence we can make the following
observations by Definition 12:

1. Since x ∈ A(x), the leaf λ(y) were x falls must contain a symbolic attack
s = ⟨Ipre1 , . . . , Ipred ⟩ ▷ ⟨Ipost1 , . . . , Ipostd ⟩k such that x ∈ ⟨Ipre1 , . . . , Ipred ⟩, x ∈
⟨Ipost1 , . . . , Ipostd ⟩ and k = 0.

2. Since z ∈ A(x), the leaf λ′(y′) were z falls must contain a symbolic attack
s′ = ⟨Jpre

1 , . . . , Jpre
d ⟩ ▷ ⟨Jpost

1 , . . . , Jpost
d ⟩k′ such that x ∈ ⟨Jpre

1 , . . . , Jpre
d ⟩, z ∈

⟨Jpost
1 , . . . , Jpost

d ⟩ and k′ is the minimum cost to pay to make x traverse λ′(y′).
This cost must be greater than 0, because t(z) ̸= t(x) implies z ̸= x .

This implies that line 13 is reachable and s.pre ∩ s′.pre ̸= ∅; hence a new
symbolic attack s′′ is added to the return value U at lines 14-17. Thus, we just
need to show that s′′ satisfies the conditions of the theorem:

• We have that x ∈ s′′.pre = s.pre ∩ s′.pre, by points 1 and 2.

• We have that z ∈ s′.post by point 2. Moreover, since z ∈ A(x), we must
have z ∈ x + ⟨Iatk1 , . . . , Iatkd ⟩ by definition of adversarial perturbation. Since
x ∈ s′′.pre by the previous point, we get z ∈ s′′.pre + ⟨Iatk1 , . . . , Iatkd ⟩, hence
we conclude z ∈ s′.post ∩ (s′′.pre+ ⟨Iatk1 , . . . , Iatkd ⟩) = s′′.post as desired.

224 CHAPTER 10. BEYOND ROBUSTNESS

10.7.2.2 Proof of Theorem 2

In this section, we provide the proof of the correctness of Theorem 2. We prove
the following invariant for the outer loop: for every instance x ∈ X and every
adversarial instance z ∈ A(x) such that F (z) ̸= F (x), there exists s ∈ C ∪E such
that x ∈ s.pre and z ∈ s.post.

Let F = {t1, . . . , tn}, consider an instance x and an adversarial instance z ∈
A(x) such that F (z) ̸= F (x). We first prove the base case, i.e., we show that the
invariant holds when no loop iteration has taken place. Initially, C =

⋃
i Ui where

each Ui is computed by calling Analyze(ti). Since F (z) ̸= F (x), there exists
ti ∈ F such that ti(z) ̸= ti(x). Hence, there exists s ∈ Ui such that x ∈ s.pre and
z ∈ s.post by Theorem 1. Then, the conclusion follows by the definition of C.

Assume now that the invariant holds up to a given iteration, we show it is
preserved at the next iteration. By the inductive hypothesis, there exists a s ∈
C∪E such that x ∈ s.pre and z ∈ s.post. We distinguish two cases. If s ∈ E, then
the conclusion is immediate because nothing is ever removed from E. If instead
s ∈ C, we show that each iteration of the inner loop cannot break the outer loop
invariant. In particular, assume some s′ ∈ C is processed by an iteration of the
inner loop, leading to updated C ′ and E ′, respectively. We can distinguish the
following cases at the end of the iteration:

• If C ′ = C \ {s′} and E ′ = E, then there exists y such that F (s.pre) =
F (s.post) = {y}. This implies that for each instance w ∈ s.pre ∪ s.post, we
have F (w) = y, thanks to the first soundness condition. Since F (x) ̸= F (z),
we have that either x ̸∈ s.pre or z ̸∈ s.post, hence s′ ̸= s and the loop
invariant is preserved.

• If C ′ = (C \ {s′})∪Split(s′) and E ′ = E, the loop invariant is preserved by
the second soundness condition.

• if C ′ = C \ {s′} and E ′ = E ∪ {s′}, then C ′ ∪E ′ = C ∪E and thus the loop
invariant is preserved.

10.8 Contribution 3: Application in Fairness

In this Section, we illustrate the work titled “Explainable Global Fairness Veri-
fication of Tree-Based Classifiers”, in proceedings as a full paper at the SaTML
’23: The 2023 IEEE Conference on Secure and Trustworthy Machine Learning.
Further details can be found in the reference [30].

The work introduced in this section diverges from the themes of this thesis
as it pertains to fairness in machine learning. In this scenario, the algorithm is
no longer susceptible to malicious attacks by an attacker in the operational phase

10.8. CONTRIBUTION 3: APPLICATION IN FAIRNESS 225

or noise and errors in the dataset during the training phase. Instead, it is sub-
ject to discrimination against users belonging to protected or sensitive categories.
However, we demonstrate how the fairness problem addressed in this work, i.e.,
causal discrimination, can be easily transposed into a context of adversarial ma-
chine learning. Furthermore, we show that the data-independent stability analysis
defined in Section 10.4 is crucial for understanding where the model is fair.

Before delving into the detailed contributions introduced in this work, it is
essential to underline that in this section, we primarily focus on the transposition
of the fairness problem into an adversarial problem and how the data-independent
stability analysis is utilised, providing only a general description of the rest of the
work and the obtained results.

The motivation behind this work stems from the recent discovery that ma-
chine learning models may exhibit unfair behaviour in the context of automated
decision-making. For example, a commercial recidivism-risk assessment algorithm
was found to be racially biased [98], and an existing algorithm adopted in the
US falsely determined that black patients were healthier than other patients with
similar conditions [133]. These incidents led to a proliferation of different research
[41, 134, 125].

Fairness in ML has been analysed from different angles and can be broadly
categorised into two main research lines. The first one includes the development of
new ML algorithms that are able to mitigate the bias that is directly or indirectly
present in the training data [2, 144, 150]. The second complementary research
line investigates techniques to estimate or formally verify the fairness guarantees
provided by existing ML models [91, 166, 87]. This paper contributes to the latter
line of work, which is still at an early stage of development and suffers from relevant
shortcomings.

A widely adopted method for assessing the fairness guarantees of machine
learning models is based on testing [71, 1, 165, 17]. The fundamental intuition
behind any fairness testing strategy is simple: generating various test inputs to
automatically identify individuals who may experience discrimination by the ma-
chine learning model. Unfortunately, like any testing approach, this analysis is
under-approximated; these proposals can identify indications of unfair treatment
but cannot establish formal fairness proofs. This limitation is suboptimal as it
hinders the ability to prove that unfair behaviour cannot impact specific classes
of individuals. Consequently, recent papers have advocated for the adoption of
formal fairness verification techniques to prove the absence of discrimination [150,
91, 166, 87, 94]. However, these primarily focus on deep neural networks. The sole
notable fairness verification approach designed for tree-based classifiers employs
abstract interpretation to verify local fairness properties [144]. Unfortunately, lo-
cal fairness is now recognised as a relatively weak property predicated solely on

226 CHAPTER 10. BEYOND ROBUSTNESS

specific test instances, while global fairness considers all possible inputs of the
classifier, making it more reliable for assessing actual fairness guarantees [94].

This work presents a new approach to the global fairness verification of tree-
based classifiers. Given a tree-based classifier and a set of sensitive features that
may lead to discrimination, our analysis synthesises sufficient conditions for fair-
ness, expressed as a set I of traditional propositional logic formulas I of the form
I = {x(1) > 1∧x(2) ≤ 5} each predicating over a subset of the feature space, rather
than just on a specific test set, thereby providing global fairness guarantees. Intu-
itively, the meaning of provided example of logic formula I is that every instance
x⃗ ∈ X with the values x(1) > 1 and x(2) ≤ 5 is considered fair.

Our fairness verification approach is formally proven to be both sound and
complete; fairness is certified for any instance satisfying some formula in I, and
the formulas in I can characterise all instances where the classifier is fair. More-
over, our approach is explainable, as it is easily understandable by human experts
based on traditional logic formulas. In particular, our approach seeks simple log-
ical formulas, i.e., containing few conditions, that characterise a large part of the
feature space. Finally, we empirically demonstrate that a small set of simple logic
formulas is sufficient to characterise largely the fairness guarantees provided by the
classifier in practice. This makes our approach particularly appealing for problems
like algorithmic hiring, where automated decisions must be carefully audited [152].

10.8.1 Unfairness Scenario

To understand how the fairness problem defined in this work can adapt to adver-
sarial machine learning and how the data-independent stability analysis defined
in Section 10.4 can be exploited to verify where the model is fair, we need to
introduce the scenario of unfairness used in this research.

Numerous definitions of fairness have been proposed in the literature, each
presenting advantages and disadvantages [169]. These fairness definitions can be
broadly classified into two main categories: individual fairness, which requires
that similar inputs yield similar outputs, and group fairness, which requires that
a particular group of inputs, considered as a whole, must be treated equally to
other groups. Individual and group fairness are significant and valuable concepts
typically investigated independently [118]. In this paper, we focus on a specific
definition of individual fairness known as the lack of causal discrimination, as
introduced in [71].

Lack of causal discrimination does not depend on the choice of a specific test
set; rather, it predicates over all possible instances in (a subset of) the feature
space X . This is crucial in the fairness setting, as fairness is particularly relevant
for minorities, so collecting representative data in the test set might be challenging.
Indeed, the need for global fairness verification has been recently advocated for

10.8. CONTRIBUTION 3: APPLICATION IN FAIRNESS 227

neural networks [94].
In essence, the lack of causal discrimination implies that any two similar in-

puts should produce identical predictions from the classifier, thus encapsulating
the concept of individual fairness. More precisely, lack of causal discrimination
necessitates that the classifier produces the same prediction for any two instances
differing solely in the values of a set of sensitive features F s ⊆ F . For a given
instance x , we denote δ(x ,F s) as the set of instances differing from x only in
a (potentially empty) subset of the sensitive features F s. For instance, if F s

comprises only two binary features, then δ(x ,F s) encompasses the four instances
derived from x by setting each sensitive feature in F s to either of its two possi-
ble values while keeping the other features constant. Formally, the lack of causal
discrimination is defined as follows.

Definition 13 (Causal Discrimination). Let h : X → Y be a classifier and F s be
a set of sensitive features. We say that h does not perform causal discrimination
on X ′ ⊆ X if and only if, for every instance x ∈ X ′, we have that ∀x ′ ∈ δ(x ,F s) :
h(x ′) = h(x).

To provide concrete examples of causal discrimination, consider a scenario
where a classifier is employed to assess the approval of loan applications, with
the set of sensitive features F s specifically encompassing the customer’s gender.
Lack of causal discrimination on X requires that any two identical customers who
differ solely in their gender must receive identical responses to their loan requests.
By narrowing the focus to a specific subset X ′ ⊆ X , the fairness guarantees be-
come conditional, and thus more practically useful. For instance, this could involve
ensuring that any two identical customers with a monthly salary exceeding $4,000
are guaranteed to receive the same response to their loan applications, irrespective
of their gender.

10.8.2 Mapping With Adversarial Machine Learning

The concept of stability extends easily from the adversarial setting to the fairness
domain, as the absence of causal discrimination requires that arbitrary perturba-
tion to the sensitive features F s should not impact the classifier’s predictions. The
definition of Causal Discrimination in Definition 13 states that: given a specific
subset of the feature space X ′ ⊆ X , a model h, and two instances x ,x ′ ∈ X ′,
differing solely in the sensitive features in F s, i.e., x ,x ′ ∈ δ(x ,F s), the model h
does not exhibit causal discrimination on x and x ′ if h(x ′) = h(x).

To formalise the fairness problem in adversarial scenarios, let’s consider the
following attacker A, that can perturb every instance x ∈ X ′ only on the features
belonging to the set F s. The corresponding adversarial perturbation set of an

228 CHAPTER 10. BEYOND ROBUSTNESS

instance x is defined as follows:

A(x) = {z | z ∈ X ′ ∧ ||z − x ||0 ≤ |F s| ∧ x lb ⪯ z ⪯ x ub} (10.4)

with x
(f)
lb = −∞ and x

(f)
ub = +∞ if f ∈ F s, zero otherwise.

Intuitively, by definition of this adversarial perturbation set, A(x) = δ(x ,F s).
Consequently, both instances x and x ′ introduced in the context of fairness are
contained in A(x). This implies that if a model h is stable (Definition 5) on the
instance x with respect to all evasion instances x ′ ∈ A(x), i.e., it does not change
predictions for any possible perturbation of features in F s, then it does not exhibit
causal discrimination on all instances in δ(x ,F s).

To verify if the model h is fair on a region of the feature space X ′ ⊆ X , it suffices
to prove that h is stable on X ′ through a data-independent stability analysis.

10.8.3 Contribution: Global Fairness Verifier

Verifying the absence of causal discrimination is challenging due to the need for
universal quantification over a set of instances, which may be drawn from a contin-
uous and unbounded feature space. Previous approaches to causal discrimination
have addressed this challenge by focusing on a finite feature space and assessing
fairness by means of a testing approach [71]. This approach involves computing
a causal discrimination score, representing the fraction of instances in the feature
space experiencing causal discrimination. However, this measure is meaningful
only when the feature space is finite and instances can be exhaustively enumer-
ated. Despite attempts to address this limitation using binning to discretise the
feature space, the testing approach in [71] lacks exhaustiveness for scalability rea-
sons. Consequently, it can only identify counterexamples suffering from causal
discrimination but cannot conclusively prove its absence. Similar critiques apply
to other recent proposals on fairness testing [1, 165, 17].

In this work, we advance the current state of the art by introducing a novel
verification technique to formally verify the fairness guarantees of tree-based mod-
els. Specifically, our technique enables the automatic identification of subsets of
the feature space where the absence of causal discrimination is assured, moving
beyond the identification of mere counterexamples. Furthermore, our technique
provides simple logical formulas that encapsulate large portions of the feature
space, guaranteeing fairness. A few simple logic formulas favour the explainability
of the model, as they enable a human expert to understand why the model is fair
concerning different inputs.

The contribution of this work is twofold. First, we provided an approach to
identify areas in the feature space that ensure the lack of causal discrimination as
defined in Definition 13. Second, we extend our approach to provide short (i.e.,

10.8. CONTRIBUTION 3: APPLICATION IN FAIRNESS 229

simple) logical formulas that cover areas of feature space, ensuring that the model
provides a lack of causal discrimination for all instances in those areas.

The first contribution is directly related to the work presented in this chapter,
as it is closely tied to the data-independent stability analysis defined in Section
10.4. The second part falls outside the scope of this thesis. Therefore, we only
briefly introduce the idea behind this work and its results. Additional details can
be found in the original work [30].

10.8.3.1 Verification Algorithm

As mentioned above, lack of causal discrimination predicates over a potentially
unbounded set of instances X ′ ⊆ X ; hence, traditional approaches to stabil-
ity/fairness verification, such as [146], cannot be directly applied to verify the
lack of causal discrimination on X ′.

Given a tree-based ensemble F , as discussed in Section 10.8.3, to identify sub-
sets of the feature space where F ensures the lack of causal discrimination, it is
sufficient to find an unbounded subset of the feature space X ′ ⊆ X where F is guar-
anteed to be stable. For this reason, we decided to leverage the data-independent
stability analysis defined in Section 10.4 to verify an unbounded subset of the
feature space where the model is stable, i.e., it has a lack of causal discrimination.

Intuitively, the output of a data-independent stability analyser E ∪ C over-
approximates the subset of the feature space where the classifier violates stability.
Note that the analyser’s output is a set of symbolic attacks s ∈ E ∪ C. Each
symbolic attack is composed of two hyper-rectangles: s.pre defines a subset of the
feature space where instances fall before an attack, and s.post represents the area in
which instances in s.post may end up after an attack. Thus, for each s ∈ E∪C, we
can consider the hyper-rectangle s.pre as a subset of the feature space where F is
unstable under attack. Consequently, if x ∈ X ′ suffers from causal discrimination,
then the result of the analysis must include a symbolic attack s ∈ E ∪C such that
x ∈ s.pre.

Let U = {s.pre | s ∈ E ∪ C}, to prove that F does not perform causal dis-
crimination on X ′ ⊆ X , it suffices to show that there exists no H ∈ U such
that H ∩ X ′ ̸= ∅. Furthermore, it follows that the union of the hyper-rectangles
in the pre-image of the symbolic attacks returned by the analysis, i.e.,

⋃
H∈U H,

over-approximates the set of counterexamples suffering from causal discrimination.
Through the space

⋃
H∈U H, we can construct a global fairness verifier, in which

every instance that falls within this space may be unfair, while every instance that
falls outside this space is certainly fair concerning causal discrimination.

230 CHAPTER 10. BEYOND ROBUSTNESS

10.8.3.2 Synthesis Algorithm

The aim of this work, however, was not only to provide a global robustness verifier
but also to characterise the subset of the feature space X ′ ⊆ X where F does
not exhibit causal discrimination on X ′. Specifically, the goal is to characterise
large subsets X ′ ⊆ X outside the unfair regions with short logic formulas easily
interpretable by human experts. However, this aspect of the work goes beyond the
main theme of this thesis, so we provide only an overview of the idea behind the
Synthesis Algorithm that produces the logic formula.

Intuitively, this problem can be conservatively addressed by removing from X
all the hyper-rectangles H ∈ U returned by the data-independent stability anal-
ysis, thus under-approximating the subset of the feature space where F is stable.
This approach would be sound but computationally inefficient due to an exponen-
tial blowup concerning the dimensionality of the feature space when subtracting
hyper-rectangles. Given two hyper-rectangles with d features, their subtraction
might generate O(d) hyper-rectangles in the general case, leading to O(d|U|) hyper-
rectangles in the worst case at the end of the subtraction process. This limitation
can be circumvented by avoiding the computation of subtraction and by directly
reasoning in terms of instances falling out from the hyper-rectangles U . However,
this would make it hard to characterise X ′ in a human-understandable way, given
both the number of hyper-rectangles and the potentially large dimensionality of
the feature space.

We thus propose an iterative algorithm to gradually formulate increasingly
complex conditions to ensure the absence of causal discrimination expressed through
traditional logic formulas. In this way, the initial iterations of the algorithm can ef-
ficiently generate concise and easily understandable conditions for human experts,
which are arguably the most beneficial for analysts. As more analysis time and
computational resources become available, the algorithm can identify more com-
plex conditions, enabling the detection of additional subsets of the feature space
where the absence of causal discrimination is guaranteed. In essence, each itera-
tion of the algorithm expands upon the sound approximation established in the
previous iteration by incorporating more intricate sufficient conditions for fairness,
continuing until the subset of the feature space is covered by these conditions or
an early stopping criterion is met.

In detail, we provided an algorithm called the Synthesis Algorithm for creating
the set I of logic formulas of the form I = {x(5) > 0 ∧ x(5) ≤ 7 ∧ x(7) > 3}
predicating over the subset of the feature space where the classifier is guaranteed
to be fair. The example formula I has a length of 3 conditions. The goal of the
Synthesis Algorithm is to find formulas of ever-increasing length to characterise
the space X \U , i.e., the subset of the feature space where the classifier is fair. Note
that, for the sake of simplicity, when we relate I and U with X , we consider I and

10.8. CONTRIBUTION 3: APPLICATION IN FAIRNESS 231

U as subsets of the feature space, and not as sets of formulas and hyper-rectangles,
respectively, representing subsets of the feature space.

The algorithm we designed takes the set of hyper-rectangles U returned by the
data-independent stability analyser as input and, iteration after iteration, creates
formulas I that become progressively more complex in order to refine the repre-
sentation of X \ U . At each iteration i, the algorithm generates formulas I with a
length (complexity) of at most i conditions. At the end of the algorithm’s execu-
tion, the set I = X \ U . However, the algorithm allows an early termination that
generates a set I ⊆ X \U . The details of how the Synthesis Algorithm creates the
Is of increasing complexity at each iteration are left to the reader, who can find
the technical detail in Section III.C: Synthesis Algorithm in [30].

10.8.4 Main Results

In this section, we briefly summarise the experiments and main results of the work
covered in this section. Our assessment involves decision tree ensembles trained on
three public datasets frequently employed in fairness literature [144]. Each dataset
corresponds to a binary classification task with relevance to fairness: Adult3 [8]
requires predicting yearly income (above or below $50,000), Statlog (German
Credit Data)4 German [82] assigning credit scores (good or bad), and Her-
itage Health5 Health [74] requires predicting ten-year mortality (above or
below the median Charlson index). All three datasets can be used to train classi-
fiers deployed to assess loan requests or health insurance scenarios.

The attribute sex is chosen as the binary-sensitive feature to ensure fairness
and prevent discrimination based on gender in all cases. While we focus on a
single sensitive feature for simplicity, it’s important to note that our approach
accommodates an arbitrary number of sensitive features.

Datasets are split into a training set Dtrain and a test set Dtest using an 80%-
20% scheme with stratified random sampling. Standard Random Forest models
are trained on Dtrain using the open-source Scikit-learn library [24]. Subsequent ex-
periments are conducted on Dtest and a synthetic dataset Drand comprising 100,000
random instances. Finally, the Synthesis Algorithm is implemented in the C++
programming language and the code is available on GitHub6.

The experiments aim to address three fundamental research questions: i) Do
the synthesised fairness conditions precisely cover the portions of the feature space
where a lack of causal discrimination is guaranteed? ii) Can we express the fairness
guarantees of classifiers using a small number of conditions of limited complexity

3https://archive.ics.uci.edu/dataset/2/adult
4https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
5https://www.kaggle.com/competitions/hhp/data
6https://github.com/LorenzoCazzaro/explainable-global-fairness-verification

https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
https://www.kaggle.com/competitions/hhp/data
https://github.com/LorenzoCazzaro/explainable-global-fairness-verification

232 CHAPTER 10. BEYOND ROBUSTNESS

to enhance explainability? iii) what is the performance in terms of exectuin time
of the Synthesis Algorithm?

10.8.5 Precision of the Synthesis Algorithm

In our initial experiment, we assessed the precision of our verification approach by
comparing the set of hyper-rectangles in U obtained from the data-independent
stability analysis with the set of formulas in I generated by the Synthesis Algo-
rithm. According to the definition of the Synthesis Algorithm, the set I identifies
the subset of the feature space that is disjoint from all hyper-rectangles in U . If
the Synthesis Algorithm runs to completion, it implies I = X \ U . However,
in practice, the Synthesis Algorithm is often subject to early termination due to
the exponential growth in the number of candidates to be analysed at different
iterations and the increasing complexity of the synthesised formulas. Therefore,
we estimate the precision of the Synthesis Algorithm when stopped after 6 itera-
tions, providing formulas with a small number of terms that are understandable
to humans.

To verify the precision of the Synthesis Algorithm, we compared the causal
discrimination score DU on the datasets Dtest and Drand based on the set of hyper-
rectangles U with the causal discrimination score DI based on the set of formulas
I (i.e., the ratio of instances in the set that belong to some H ∈ U and the ratio of
instances in the set that do not belong to any I ∈ I). Our results indicated that
DU and DI coincided in the vast majority of cases, signifying that the formulas
in I accurately characterised the subset of the feature space that is disjoint from
all hyper-rectangles in U , even when enforcing early stopping after 6 iterations.
The only case where we observed DI not reaching DU is after 6 iterations on the
German dataset. However, we proved the two scores align when the number of
iterations slightly increases.

10.8.6 Explainability of the Results

To assess the explainability of the formulas I, we adopt the methodology utilised
in previous works focusing on the extraction of explainable information from clas-
sifiers through logic formulas [97, 57, 123]. In these approaches, the complexity of
logic formulas is measured by their length (number of atoms) and shorter logic for-
mulas are preferred for their clearer interpretability. Additionally, a small number
of formulas is considered crucial for enhancing explicability.

To measure the capability of our algorithm to provide concise formulas char-
acterising large areas of the feature space where the model ensures fairness, we
computed the percentage of instances in Dtrain covered by each formula. The more
instances a formula covers, the more expressive it is in proving fairness based on

10.8. CONTRIBUTION 3: APPLICATION IN FAIRNESS 233

the training data. To find a limited number of short formulas for an explainable
characterisation of where the classifier is fair, we employed a greedy strategy for
selecting the best I ∈ I returned by the Synthesis Algorithm.

It is important to note that at each iteration i of the Synthesis Algorithm, it
returns formulas of length at most i. Hence, we need to focus on the first algorithm
iterations to have shot formulas. However, the union of the formulas found in the
very early iterations is not guaranteed to cover a significant portion of the instances
in Dtrain. Consequently, we need to select the minimum number of formulas in I
computed in the first k iterations that maximise coverage on Dtrain. Using the
following greedy strategy, we identified the set of most important formulas Ikbest
that optimise our problem. First, we ordered the formulas in I in ascending order
of length. Subsequently, we selected the most important formula in terms of the
number of covered instances in Dtrain. Finally, we removed the covered instances
from Dtrain before selecting the second most important formula, and so on, until
k formulas were selected. The order based on the length of the formulas ensures
that at each iteration of the greedy algorithm, the shortest formula that covers the
highest number of instances is selected.

To evaluate the quality of the set Ikbest created with respect to Dtrain, we as-
sessed how many instances in Dtest and Drand are covered by Ikbest. The results of
this experiment demonstrated that with k = 6, the Synthesis Algorithm for the
Adult and Health datasets requires only the top 10 formulas to cover approx-
imately 90% of the instances in Dtest. Meanwhile, for the German dataset, the
top 20 formulas are sufficient to guarantee fairness for 80% of the instances in
Dtest. This indicates that a small number of formulas effectively characterise fair-
ness guarantees on Dtest. Furthermore, we observed that more formulas are needed
to cover synthetic instances in Drand. Specifically, the top 20 formulas cover only
around 30% of the instances in Adult and approximately 60% of the instances in
German.

The difference in results between Dtest and Drand can be attributed to the fact
that the conditions in the formulas of Ikbest depend on the thresholds learned from
Dtrain. Consequently, the top conditions exhibit better generalisation on a Dtest

dataset that shares the same data distribution as Dtrain than on a set of randomly
generated instances like Drand.

10.8.7 Performance Evaluation

To evaluate the performance of the Synthesis Algorithm in terms of execution
time, the time required by the data-independent stability analyser as defined in
Section 10.4 to compute the hype-rectangle in U .

We analysed the performance, focussing on ensembles comprising a maximum
of 13 trees with a maximum height of 6. The results indicate that all models can be

234 CHAPTER 10. BEYOND ROBUSTNESS

analysed within a few minutes, with the analysis taking approximately 30 minutes
on the Adult dataset, 5 minutes on the German dataset, and only 13 seconds
on the Health dataset, when six iterations of the algorithm are performed. We
discovered an exponential increase in execution time as the number of iterations
and the complexity of the models increased. The model’s complexity significantly
impacts the execution time of the Synthesis Algorithm since it impacts the number
of features and thresholds. More features and thresholds provide more symbolic
attacks in output from the data-independent stability analyser. Consequently,
since the Apriori algorithm inspires the Synthesis Algorithm, the execution time
exponentially grows with the number of items to be processed. This underscores
the advantages of the iterative characteristic of our approach, which allows for
an early stopping criterion to gather partial yet empirically precise results, useful
where achieving full convergence may be computationally prohibitive.

10.9. SUMMARY 235

10.9 Summary

Following, we summarise the contributions of the research presented in this chap-
ter, titled “Beyond Robustness”.

• Shortcomings of Robustness: In this work, we have argued and empir-
ically demonstrated that robustness metrics for evaluating the security of
machine learning models in adversarial scenarios can provide a false sense
of security. Robustness measures the security of the model based on the in-
stances of a given test set Dtest, yet it provides no guarantees regarding the
robustness with respect to instances sampled in a very small neighbourhood
of the instances in Dtest. In fact, we showed that random sampling in the
neighbourhoods of the instances in Dtest leads to robustness values signifi-
cantly different from those estimated on the original test set; hence, proving
that robustness is not a trustworthy metric.

• Contribution: To overcome the limitations of Robustness, we introduced
a new metric called Resilience. An instance x is resilient if all instances in a
small neighbourhood of x are robust. While Resilience is a much-improved
metric for assessing the security of machine learning models, it follows that
there is an infinite number of instances in a neighbourhood of x ; conse-
quently, verifying robustness for each of them is not feasible. For this reason,
we proposed a data-independent stability analysis to identify regions in the
feature space where the model is stable, meaning its prediction remains un-
changed under attack. Consequently, all instances correctly predicted by the
model falling within one of these stable areas are both robust and resilient.

• Main Results: In the experimental phase, we empirically demonstrated
that robustness can provide a false sense of security, even in real-world sce-
narios. Additionally, we established that our under-approximated resilience,
calculated using our data-independent stability analyser, is precise. Our
empirical findings indicate that potentially significant disparities between
robustness and estimated resilience occur because the estimated resilience
closely aligns with the robustness measured over the “most unlucky” sam-
pling performed in a small neighbourhood of the original test set. This con-
firms that our resilience estimates effectively capture evasion attacks against
plausible samplings from the same data distribution used to construct the
original test set. Finally, we showed the feasibility of resilience verification
in practice, especially for relatively small models and simple datasets. For
larger models, we demonstrated that the iterative refinement process sup-
ported by our analysis technique can be employed to obtain useful under-
approximations of resilience even before analysis convergence.

236 CHAPTER 10. BEYOND ROBUSTNESS

• Data-Independent Stability Analysis for Fairness: We demonstrated
the versatility of our data-independent stability analysis by extending its
application beyond adversarial machine learning to encompass domains such
as fairness. Specifically, we elucidated how model fairness, defined in terms
of lack of causal discrimination, can be construed as model stability in ad-
versarial scenarios. A machine learning model is deemed free from causal
discrimination if, given two instances that differ solely in the sensitive at-
tributes, it predicts the same label for both. In an adversarial scenario, the
model achieves stability (i.e., fairness in the original problem) on a given in-
stance when it consistently produces the same prediction despite adversarial
perturbations applied to the sensitive attributes. In other words, any two in-
stances differing only in the sensitive attributes receive identical predictions.
Our analyser enables the computation of areas in the feature space where
the model is free from causal discrimination (i.e., is stable).

10.9.1 Future Work

Below, we provide potential extensions and future research from this work.

• Application to Diverse Machine Learning Models: Extending the
application of the resilience metric and the stability analyzer to a broader
range of machine learning models beyond decision trees and ensembles is
another avenue for future research. Investigating how well these concepts
generalise to diverse model architectures, such as neural networks or support
vector machines, would contribute to a more comprehensive understanding
of model robustness in different contexts.

• Scalability and Efficiency Improvements: As the data-independent sta-
bility analyser forms a crucial component of the resilience estimation process,
there is room for research aimed at enhancing its scalability and efficiency.
Since the soundness proofs of our analysis abstract from several implementa-
tion details, e.g., the splitting criterion for symbolic attacks, different heuris-
tics may be tried out to handle larger models and datasets without compro-
mising the accuracy of resilience estimates.

• Incorporating Domain-Specific Knowledge: The threat model used in
this work allows the attacker to perturb any combination of a number of
features. This is not always allowed in real scenarios and makes the analysis
very expensive. It would be interesting to explore the utility of the resilience
and analyzer when integrating domain-specific knowledge into the threat
model to into account the application domain, potential attack scenarios, or
specific characteristics of the input data.

Chapter 11

Discussion Second Part

Part II focused on the research studies pursued during my doctorate with respect to
the domain of adversarial machine learning. Specifically, the research has unfolded
in two different yet interconnected areas. The first relates to the design of learning
algorithms robust to evasion attacks, a common and easily executable type of
attack. In this concern, we have concentrated on binary classification problems
and learning algorithms based on ensembles of decision trees. The second area of
research we covered pertains to the verification and certification of model security,
expressed in terms of the robustness of other metrics. This involves designing
certificates and verifiers to assess the security of models and proposing a new
metric to assess the security of machine learning models.

These research areas seek to make machine learning models data-aware in dif-
ferent ways. The first involves designing learning algorithms to train models robust
to maliciously crafted inputs, carefully designed by an attacker, thus pursuing the
definition of data-aware algorithms. The second focuses on proposing strategies to
analyse a given model to understand when it is secure against attacks and where
malicious inputs can compromise it.

In Chapter 9, we discussed Feature-Partitioned Forest (FPF) [34], a learning
algorithm to train robust ensembles of decision trees. During the training phase,
the FPF algorithm considers the presence of a possible attacker in the operational
phase and creates forests of decision trees robust by construction. The robustness
of these forests is derived from a robust partitioning of the feature space among
the trees in the forest, which ensures, given an attacker with an adversary’s model
constrained by L0-norm and a fixed number of features b, that such attacks cannot
compromise the majority of trees in a forest if the forest has a size greater than
or equal to 2b + 1. This robustness by construction comes at the expense of the
accuracy of the ensemble in the absence of an attack, as individual trees are not
allowed to exploit all the features available in the dataset. However, this special
structure of ensembles has allowed the design of two robustness certifiers, Fast

237

238 CHAPTER 11. DISCUSSION SECOND PART

Robustness Lower-Bound (FLB) and Exhaustive Robustness Lower-Bound (ELB),
which efficiently and accurately calculate a lower-bound of the model’s robustness
[34].

In Chapter 10 instead, we defined a new metric called Resilience [31] for ver-
ifying the security of machine learning models. We introduced this new metric
because we demonstrated how the well-known Robustness metric, widely used
in adversarial machine learning to quantify models’ security, can provide a false
sense of security. The motivation behind this discovery is that robustness quan-
tifies the model’s security based only on a fixed set of instances D. However, it
says nothing about all possible sets D′ containing instances very close to those in
D. Resilience, on the other hand, ensures that every instance x ∈ D considered
robust, has a fixed size neighbourhood N(x) in which all instances x ′ ∈ N(x)
are also robust. Through resilience, it is possible to estimate better the ability
of machine learning models to resist malicious inputs. In the same work, we also
defined a data-independent stability analysis to understand where the model is
not stable. The analysis returns a set of symbolic attacks, a structure composed
of two hyper-rectangles, the pre-image and the post-image, which identify regions
in the feature space where instances fall before and after the attack, respectively.
Consequently, the regions of the feature space contained in the hyper-rectangles in
the pre-images indicate where the model cannot guarantee stability under attack,
i.e., it may change predictions on instances falling within those hyper-rectangles.
The information obtained from the model’s analysis allows us to calculate resilience
and characterise the feature space where the attacker is harmless. Additionally, we
showed that this analysis can be exploited to compute other adversarial machine
learning metrics, such as robustness (i.e., Section 10.6.2), or to calculate metrics
beyond this domain, such as fairness in terms of causal discrimination (i.e., Section
10.8).

To conclude this last chapter related to the research part dedicated to the
domain of adversarial machine learning, we want to pose an interesting research
question that opens up possible future works: Is it possible to leverage the effi-
ciency of the FLB and ELB certificates and the hyper-rectangles created by the
data-independent stability analyser for creating effective strong evasion attacks to
exploit for adversarial training?

Adversarial training is the practice of using instances perturbed by an attacker
during the training phase. The goal is to enable the learning algorithm to ex-
plore regions of the feature space that are unlikely to be (or not) covered by the
distribution of legitimate input data and learn to classify attacked instances cor-
rectly. A fundamental factor determining the effectiveness of adversarial training
approaches is the quality of the attacks used during the training phase. Attacks
that do not explore unlikely regions of the feature space or are too weak may re-

239

sult in ineffective models under attack. The research on high-quality adversarial
attacks is a branch of study in adversarial machine learning.

Let us draw some observations from the research works introduced in this part
of the thesis. In the case of models trained with FPF, the evasion instances that
effectively change the model’s prediction do not do so by compromising the major-
ity of the forest, as this is not possible by construction. Instead, they achieve this
by attacking the high-quality features used by the model to discriminate between
instances. The weakness of FPF forests is not due to the attacker but to the lack
of high-quality features to distribute among all the trees in the forest (Section
9.3.3). The lack of high-quality features leads to the creation of inaccurate trees.
Consequently, the attacker exploits the errors of less accurate trees to its advan-
tage. It targets the more accurate trees, i.e., attacks the high-quality features to
obtain an incorrect prediction in the majority of the forest. FLB and ELB take
this attacker’s behaviour into account in their algorithm. Consequently, the eva-
sion attacks considered effective by the certifiers are attacks performed on accurate
trees and, therefore, on high-quality features. Thus, it is possible to leverage FLB
and ELB to create sets of effective evasion attacks by sampling instances from the
feature space and efficiently certifying them with the certifiers. If the certifiers say
the instance is not attackable, it is discarded, and the next one is generated. The
effective evasion attacks can be used to train robust machine learning models with
adversarial training strategies, even those not based on decision trees.

The possibility of creating effective evasion attacks is even more immediate
in the work defined in Chapter 10. Specifically, it is possible to leverage the
hyper-rectangles in the pre-images of symbolic attacks produced by the analyser
to sample evasion instances. Indeed, the hyper-rectangles represent a subset of the
feature space where the model may be unstable, and being this space continuous,
it is possible to sample infinite evasion instances. Furthermore, the ensemble
analysis is done only once, but once the output of the data-independent stability
analyser is obtained, it is possible to sample large amounts of data efficiently.
Additionally, there is a substantial difference between the attacks generated by
the hyper-rectangles of the analyser and those generated with the FLB and ELB
certificates. Attacks generated using FLB and ELB certifiers are created on a
specific class of models, i.e., those created by the FPF algorithm. On the other
hand, the hyper-rectangles in the pre-images can be derived from different models,
provided they are based on decision trees and use majority voting for prediction.

The two works introduced in this part of the thesis can be exploited together
or independently to create data-aware models in adversarial machine learning sce-
narios through adversarial training approaches.

240 CHAPTER 11. DISCUSSION SECOND PART

Chapter 12

Conclusion

The research covered in this thesis focused on making machine learning models
more effective, efficient and robust. In particular, we focussed on the effectiveness
and efficiency of learning to rank algorithms and the robustness of binary classi-
fication algorithms in adversarial scenarios. To achieve this goal, we focused on
designing data-aware learning algorithms, i.e., aware of harmful inputs that may
exist during both the training and operational phases. A harmful input encom-
passes everything that compromises the model’s quality, such as noise, errors, or
outliers within the training set or malicious instances crafted by an attacker to
elicit unexpected behaviours from the model.

In our study on ranking models, we found that certain types of documents
within the training set can have a negative effect on the models’ effectiveness. In
particular, in the work titled “Filtering out Outliers in Learning to Rank” [121],
published at ICTIR ’22: The 2022 ACM SIGIR International Conference on the
Theory of Information Retrieval, we provided the definition of consistent posi-
tive/negative outlier documents. These types of documents are consistently mis-
ranked during the model training phase. As a consequence, the continuous pres-
ence of consistent outliers during the learning phase compromises the final models’
effectiveness. To deal with such detrimental documents, we designed Surrender on
Outliers and Rank (SOUR), an algorithm to identify and remove consistent out-
liers from the training set. Through extensive evaluations, we demonstrated that
the cleaner training sets provided by SOUR enhance the models’ effectiveness.

Furthermore, we focused on discarding redundant or superfluous non-relevant
documents within the training set. In the work titled “On the Effect of Low-
Ranked Documents: A New Sampling Function for Selective Gradient Boosting”
[110], published at SAC ’23: The 2023 ACM SIGAPP Symposium on Applied
Computing, we discovered that in the training set, there might be documents
that are superfluous which not only are they useless to the learning process,
but they can even compromise its quality and efficiency. For this reason, we

241

242 CHAPTER 12. CONCLUSION

designed High Low Sampl a selection function for the Selective Gradient Boost-
ing (SelGB) framework [115]. This selection strategy selects from the training set
all the relevant documents, the most-informative non-relevant documents, i.e., the
non-relevant documents ranked highest in the ranking, and the less-informative
non-relevant documents, i.e., the non-relevant documents ranked lowest in the
ranking. Thus, this selection function exploits the informativeness of the lowest-
ranked non-relevant documents originally disregarded by SelGB. Leveraging on
the lower-ranked documents enhances the final models’ effectiveness compared to
SelGB and reduces the training time due to fewer documents being processed.

The last work discussed in this thesis regarding the domain of learning to rank
is “LambdaRank Gradients are Incoherent” [122], published at CIKM ’23: The
2023 ACM International Conference on Information and Knowledge Management.
In our study, we discovered a notable issue with LambdaRank and its derivatives,
such as LambdaMART and the metric-driven loss function defined by Wang et
al. in [173]. We showed that in such algorithms, the gradients are incoherent
with respect to the learned ranking and relevance of the documents. Specifically,
we observed that, during the learning phase, a mis-ranked document with high
relevance could be pushed down in rankings more significantly than a document
with lower relevance. This suggests that the learning algorithm failed to learn how
to prioritise the most relevant documents. We demonstrated that the occurrence
of this phenomenon is more frequent when optimising truncated metric rather
than un-truncated metric. Through an in-depth analysis, we discovered that this
exacerbation occurs due to fewer pairwise document comparisons implied by the
truncated metric optimisation. Despite being truncated optimisation more effi-
cient in terms of training time than un-truncated optimisation, it provides less
effective models. In light of all this, we designed Lambda-eX, an algorithm that
thought three strategies to perform the most useful pairwise document compar-
isons to enhance model effectiveness without compromising the training efficiency.
Through empirical evaluation, we demonstrated that Lambda-eX provides effective
models as un-truncated metric optimisation while maintaining training efficiency
as truncated matric optimisation.

In our work on binary classification models, we focused on the creation of
data-aware ensembles of decision trees that are robust to attacks from a malicious
entity. In the work titled “Feature Partitioning for Robust Tree Ensembles and
Their Certification in Adversarial Scenarios” [34], published at EURASIP Journal
on Information Security, 2021, we designed a robust learning algorithm named
Feature-Partitioned Forest (FPF) to train ensembles of decision trees robust by
construction to evasion attacks. FPF ensembles are robust to adversary’s models
constrained by L0-norm and a budget b. The key concept behind the robustness
by contraction of FPF models relies on training each tree within the ensemble

243

on a distinct partition of the feature space. This strategic robust partitioning is
designed to ensure that the impact of an evasion attack is limited to less than
half of the ensemble. The resulting ensemble’s structure allowed us to develop two
accurate and efficient robustness certification algorithms named Fast Robustness
Lower-Bound (FLB) and Exhaustive Robustness Lower-Bound (ELB). Through
extensive experimental analyses, we demonstrated that FPF provides ensembles
more robust to evasion attacks generated by the provided adversary’s model than
the competitors. Moreover, we demonstrated that both FLB and ELB provide
accurate estimates of the exact robustness of the models.

Additionally, in the work titled “Beyond Robustness: Resilience Verification of
Tree-Based Classifiers” [31], published at Computers & Security, 2022, we demon-
strated that the widely used robustness metric, commonly employed to quantify
the security of classification models, may provide a false sense of security. The
motivation behind this undesired characteristic of robustness lies in its local esti-
mation of the security of the models, which only depends on instances in a given
finite test set D. To overcome this deficiency, we designed the Resilience met-
ric. The resilience ensures that for every instance x ∈ D is considered robust if
and only if given a neighbourhood N(x), every instance x ′ ∈ N(x) are also ro-
bust. In order to estimate the resilience, we defined a data-independent stability
analysis to extract regions of the feature space where machine learning models
are potentially affected by malicious inputs. In this work, we empirically demon-
strated that robustness does provide a false sense of security and that resilience
can be effectively estimated for small tree-based ensembles. Notably, we demon-
strated that the data-independent stability analysis provided in this work can be
exploited in other research areas different from adversarial machine learning, such
as fairness. In fact, in “Explainable Global Fairness Verification of Tree-Based
Classifiers” [30], published at SaTML ’23: The 2023 IEEE Conference on Secure
and Trustworthy Machine Learning, we built upon this work to design a Synthesis
Algorithm to characterise regions of the features space where models provide lack
of causal discrimination, with few short traditional logic formulas explainable to
human experts.

The research works presented in this thesis represent an important step towards
creating data-aware models. A natural extension of this work is to enhance the
data-awareness of learning to rank models in an adversarial setting, thus bridging
the two distinct parts covered in this work. This research branch is particularly
crucial and, as of yet, has not been extensively explored. Indeed, adversarial
scenarios are possible and may be relevant for different ranking systems. It is
noteworthy that the attack paradigm differs from that addressed in this thesis,
as our focus was primarily on classification tasks. In the context of ranking, the
model’s quality depends on its ability to rank the most important elements for a

244 CHAPTER 12. CONCLUSION

query at the top of the list. Therefore, attacks designed for classification contexts
are not directly applicable to ranking scenarios.

A classic example of an attack in the ranking context involves modifying the
attributes of an item to make it seem more relevant to a query or a specific type of
query. This can lead to situations like aggressive marketing, promoting fake news,
or bypassing spam filters. There are also availability violation attacks, where an
attacker attempts to fill the top-ranking positions to hide relevant items and push
them to lower positions. This can lead to fewer user clicks to relevant items,
which can be detrimental to e-commerce websites or other online platforms. In
the context of online learning to rank based on click models, an attacker might
intentionally click on non-relevant items to force the model to learn incorrect rank-
ings, thereby reducing its effectiveness [175]. These types of attacks highlight the
importance of developing data-aware models that are robust to adversarial scenar-
ios.

It’s important to note that reasoning in terms of adversarial machine learning
on learning to rank models is not straightforward. This is because learning to
rank is only applied in the final part of the pipeline of a ranking system, i.e., in
the re-ranking stage. It’s implausible to assume that an attack occurs directly
by perturbing the dense representation of query-document pairs. Therefore, the
attack must occur at the beginning of the pipeline on raw data of the items. For
example, an attack might target the text of web pages in the case of a web search
engine or the descriptions of items’ attributes in the case of e-commerce. As a
result, the attack must traverse the entire ranking pipeline before reaching the
re-ranking stage, where learning-to-rank strategies are generally employed. This
makes it particularly challenging to develop effective and robust data-aware models
for learning to rank in adversarial scenarios.

Several attempts have been made in the direction of enhancing and assessing
the robustness of learning to rank models in adversarial scenarios. For example,
Goren et al. in [77] provided formal and empirical analyses of the robustness of
ranking models based on learning to rank with respect to document perturbations.
Similarly, Yu et al. in [185] conducted an in-depth study on adversarial attacks in
the domain of learning to rank, specifically analysing various types of Generative
Adversarial Networks (GANs). Despite these efforts, research on making learning
to rank models robust to adversarial attacks is still in its early stages.

While there are several research works in information retrieval dedicated to
stopping malicious inputs, such as email spam recognition through word-based
filters, the advent of machine learning has led to a paradigm shift. These diverse
strategies are not directly applicable in the context of adversarial machine learning,
highlighting the need for additional exploration and development in this field. As
machine learning models become increasingly prevalent in information retrieval,

245

it’s crucial to ensure that they are robust and secure in the face of potential
adversarial attacks. Furthermore, nowadays, research on adversarial scenarios in
ranking has mostly been devoted to the security of ranking systems leveraging deep
learning [108, 105, 174]. However, significantly less attention has been given to
learning to rank learning algorithms, which are still widely used in the industry.

246 CHAPTER 12. CONCLUSION

Bibliography

[1] Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan
Saha. “Black box fairness testing of machine learning models”. In: Pro-
ceedings of the ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019. Ed. by
Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo. ACM,
2019, pp. 625–635. doi: 10.1145/3338906.3338937.

[2] Sina Aghaei, Mohammad Javad Azizi, and Phebe Vayanos. “Learning Op-
timal and Fair Decision Trees for Non-Discriminative Decision-Making”. In:
The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Confer-
ence, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019. AAAI Press, 2019, pp. 1418–1426. doi: 10.1609/aaai.
v33i01.33011418.

[3] American Federation of Information Processing Societies: Proceedings of
the AFIPS ’68 Fall Joint Computer Conference, December 9-11, 1968, San
Francisco, California, USA - Part I. Vol. 33. AFIPS Conference Proceed-
ings. AFIPS / ACM / Thomson Book Company, Washington D.C., 1968.
isbn: 978-1-4503-7899-4. doi: 10.1145/1476589.

[4] Maksym Andriushchenko and Matthias Hein. “Provably robust boosted
decision stumps and trees against adversarial attacks”. In: Advances in
Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada. Ed. by Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett.
2019, pp. 12997–13008.

[5] Javed A. Aslam, Evangelos Kanoulas, Virgiliu Pavlu, Stefan Savev, and
Emine Yilmaz. “Document selection methodologies for efficient and effective
learning-to-rank”. In: Proceedings of the 32nd Annual International ACM

247

https://doi.org/10.1145/3338906.3338937
https://doi.org/10.1609/aaai.v33i01.33011418
https://doi.org/10.1609/aaai.v33i01.33011418
https://doi.org/10.1145/1476589

248 BIBLIOGRAPHY

SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 2009, Boston, MA, USA, July 19-23, 2009. Ed. by James Allan,
Javed A. Aslam, Mark Sanderson, ChengXiang Zhai, and Justin Zobel.
ACM, 2009, pp. 468–475. doi: 10.1145/1571941.1572022.

[6] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D.
Tygar. “Can machine learning be secure?” In: Proceedings of the 2006 ACM
Symposium on Information, Computer and Communications Security, ASI-
ACCS 2006, Taipei, Taiwan, March 21-24, 2006. Ed. by Ferng-Ching Lin,
Der-Tsai Lee, Bao-Shuh Paul Lin, Shiuhpyng Shieh, and Sushil Jajodia.
ACM, 2006, pp. 16–25. doi: 10.1145/1128817.1128824.

[7] Martyna Bator. Dataset for Sensorless Drive Diagnosis. Feb. 2015. doi:
10.24432/C5VP5F.

[8] Barry G. Becker and Ronny Kohavi. Adult. Apr. 1996. doi: 10.24432/
C5XW20.

[9] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston.
“Curriculum learning”. In: Proceedings of the 26th Annual International
Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada,
June 14-18, 2009. Ed. by Andrea Pohoreckyj Danyluk, Léon Bottou, and
Michael L. Littman. Vol. 382. ACM International Conference Proceeding
Series. ACM, 2009, pp. 41–48. doi: 10.1145/1553374.1553380.

[10] Kristin P. Bennett and O. L. Mangasarian. Robust linear programming
discrimination of two linearly inseparable sets. 1992. doi: 10 . 1080 /

10556789208805504.

[11] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim
Srndic, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. “Evasion Attacks
against Machine Learning at Test Time”. In: Machine Learning and Knowl-
edge Discovery in Databases - European Conference, ECML PKDD 2013,
Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III. Ed.
by Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip Zelezný.
Vol. 8190. Lecture Notes in Computer Science. Springer, 2013, pp. 387–402.
doi: 10.1007/978-3-642-40994-3_25.

[12] Battista Biggio, Igino Corona, Blaine Nelson, Benjamin I. P. Rubinstein,
Davide Maiorca, Giorgio Fumera, Giorgio Giacinto, and Fabio Roli. “Se-
curity Evaluation of Support Vector Machines in Adversarial Environ-
ments”. In: Support Vector Machines Applications. Ed. by Yunqian Ma and
Guodong Guo. Cham: Springer International Publishing, 2014, pp. 105–153.
isbn: 978-3-319-02300-7. doi: 10.1007/978-3-319-02300-7_4.

https://doi.org/10.1145/1571941.1572022
https://doi.org/10.1145/1128817.1128824
https://doi.org/10.24432/C5VP5F
https://doi.org/10.24432/C5XW20
https://doi.org/10.24432/C5XW20
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1080/10556789208805504
https://doi.org/10.1080/10556789208805504
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-319-02300-7_4

BIBLIOGRAPHY 249

[13] Battista Biggio, Giorgio Fumera, and Fabio Roli. “Multiple classifier sys-
tems for robust classifier design in adversarial environments”. In: Interna-
tional Journal of Machine Learning and Cybernetics 1.1-4 (2010), pp. 27–
41. doi: 10.1007/S13042-010-0007-7.

[14] Battista Biggio, Giorgio Fumera, and Fabio Roli. “Security Evaluation of
Pattern Classifiers under Attack”. In: IEEE Transactions on Knowledge and
Data Engineering 26.4 (2014), pp. 984–996. doi: 10.1109/TKDE.2013.57.

[15] Battista Biggio, Blaine Nelson, and Pavel Laskov. “Support Vector Ma-
chines Under Adversarial Label Noise”. In: Proceedings of the 3rd Asian
Conference on Machine Learning, ACML 2011, Taoyuan, Taiwan, Novem-
ber 13-15, 2011. Ed. by Chun-Nan Hsu and Wee Sun Lee. Vol. 20. JMLR
Proceedings. JMLR.org, 2011, pp. 97–112.

[16] Battista Biggio and Fabio Roli. “Wild Patterns: Ten Years After the Rise of
Adversarial Machine Learning”. In: Pattern Recognit. 84 (2018), pp. 317–
331. doi: 10.1016/J.PATCOG.2018.07.023.

[17] Emily Black, Samuel Yeom, and Matt Fredrikson. “FlipTest: fairness test-
ing via optimal transport”. In: FAT* ’20: Conference on Fairness, Account-
ability, and Transparency, Barcelona, Spain, January 27-30, 2020. Ed. by
Mireille Hildebrandt, Carlos Castillo, L. Elisa Celis, Salvatore Ruggieri,
Linnet Taylor, and Gabriela Zanfir-Fortuna. ACM, 2020, pp. 111–121. doi:
10.1145/3351095.3372845.

[18] Andrew P. Bradley. “The use of the area under the ROC curve in the eval-
uation of machine learning algorithms”. In: Pattern Recognit. 30.7 (1997),
pp. 1145–1159. doi: 10.1016/S0031-3203(96)00142-2.

[19] Leo Breiman. “Bagging Predictors”. In: Machine Learning 24.2 (1996),
pp. 123–140. doi: 10.1007/BF00058655.

[20] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–
32. doi: 10.1023/A:1010933404324.

[21] Sergey Brin and Lawrence Page. “The Anatomy of a Large-Scale Hyper-
textual Web Search Engine”. In: Comput. Networks 30.1-7 (1998), pp. 107–
117. doi: 10.1016/S0169-7552(98)00110-X.

[22] Sebastian Bruch. “An Alternative Cross Entropy Loss for Learning-to-
Rank”. In: WWW ’21: The Web Conference 2021, Virtual Event / Ljubl-
jana, Slovenia, April 19-23, 2021. Ed. by Jure Leskovec, Marko Grobelnik,
Marc Najork, Jie Tang, and Leila Zia. ACM / IW3C2, 2021, pp. 118–126.
doi: 10.1145/3442381.3449794.

https://doi.org/10.1007/S13042-010-0007-7
https://doi.org/10.1109/TKDE.2013.57
https://doi.org/10.1016/J.PATCOG.2018.07.023
https://doi.org/10.1145/3351095.3372845
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1145/3442381.3449794

250 BIBLIOGRAPHY

[23] Sebastian Bruch, Shuguang Han, Michael Bendersky, and Marc Najork. “A
Stochastic Treatment of Learning to Rank Scoring Functions”. In: WSDM
’20: The Thirteenth ACM International Conference on Web Search and
Data Mining, Houston, TX, USA, February 3-7, 2020. Ed. by James Caver-
lee, Xia (Ben) Hu, Mounia Lalmas, and Wei Wang. ACM, 2020, pp. 61–69.
doi: 10.1145/3336191.3371844.

[24] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gram-
fort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian
Holt, and Gaël Varoquaux. “API design for machine learning software: ex-
periences from the scikit-learn project”. In: ECML PKDD Workshop: Lan-
guages for Data Mining and Machine Learning. 2013, pp. 108–122.

[25] Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. “Learning
to Rank with Nonsmooth Cost Functions”. In: Advances in Neural In-
formation Processing Systems 19, Proceedings of the Twentieth Annual
Conference on Neural Information Processing Systems, Vancouver, British
Columbia, Canada, December 4-7, 2006. Ed. by Bernhard Schölkopf, John
C. Platt, and Thomas Hofmann. MIT Press, 2006, pp. 193–200.

[26] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt
Deeds, Nicole Hamilton, and Gregory N. Hullender. “Learning to rank us-
ing gradient descent”. In: Machine Learning, Proceedings of the Twenty-
Second International Conference (ICML 2005), Bonn, Germany, August
7-11, 2005. Ed. by Luc De Raedt and Stefan Wrobel. Vol. 119. ACM
International Conference Proceeding Series. ACM, 2005, pp. 89–96. doi:
10.1145/1102351.1102363.

[27] Christopher JC Burges. “From ranknet to lambdarank to lambdamart: An
overview”. In: Learning 11.23-581 (2010), p. 81.

[28] Francesco Busolin, Claudio Lucchese, Franco Maria Nardini, Salvatore Or-
lando, Raffaele Perego, and Salvatore Trani. “Learning Early Exit Strategies
for Additive Ranking Ensembles”. In: SIGIR ’21: The 44th International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, Virtual Event, Canada, July 11-15, 2021. Ed. by Fernando Diaz,
Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai.
ACM, 2021, pp. 2217–2221. doi: 10.1145/3404835.3463088.

[29] Qi-Zhi Cai, Chang Liu, and Dawn Song. “Curriculum Adversarial Train-
ing”. In: Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Swe-
den. Ed. by Jérôme Lang. ijcai.org, 2018, pp. 3740–3747. doi: 10.24963/
IJCAI.2018/520.

https://doi.org/10.1145/3336191.3371844
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/3404835.3463088
https://doi.org/10.24963/IJCAI.2018/520
https://doi.org/10.24963/IJCAI.2018/520

BIBLIOGRAPHY 251

[30] Stefano Calzavara, Lorenzo Cazzaro, Claudio Lucchese, and Federico Mar-
cuzzi. “Explainable Global Fairness Verification of Tree-Based Classifiers”.
In: 2023 IEEE Conference on Secure and Trustworthy Machine Learning
(SaTML). Los Alamitos, CA, USA: IEEE Computer Society, Feb. 2023,
pp. 1–17. doi: 10.1109/SaTML54575.2023.00011.

[31] Stefano Calzavara, Lorenzo Cazzaro, Claudio Lucchese, Federico Marcuzzi,
and Salvatore Orlando. “Beyond robustness: Resilience verification of tree-
based classifiers”. In: Comput. Secur. 121 (2022), p. 102843. doi: 10.1016/
J.COSE.2022.102843.

[32] Stefano Calzavara, Lorenzo Cazzaro, Giulio Ermanno Pibiri, and Nicola
Prezza. “Verifiable Learning for Robust Tree Ensembles”. In: Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2023, Copenhagen, Denmark, November 26-30, 2023. Ed. by
Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda.
ACM, 2023, pp. 1850–1864. doi: 10.1145/3576915.3623100.

[33] Stefano Calzavara, Pietro Ferrara, and Claudio Lucchese. “Certifying De-
cision Trees Against Evasion Attacks by Program Analysis”. In: Com-
puter Security - ESORICS 2020 - 25th European Symposium on Research
in Computer Security, ESORICS 2020, Guildford, UK, September 14-18,
2020, Proceedings, Part II. Ed. by Liqun Chen, Ninghui Li, Kaitai Liang,
and Steve A. Schneider. Vol. 12309. Lecture Notes in Computer Science.
Springer, 2020, pp. 421–438. doi: 10.1007/978-3-030-59013-0_21.

[34] Stefano Calzavara, Claudio Lucchese, Federico Marcuzzi, and Salvatore Or-
lando. “Feature partitioning for robust tree ensembles and their certification
in adversarial scenarios”. In: EURASIP J. Inf. Secur. 2021.1 (2021), p. 12.
doi: 10.1186/S13635-021-00127-0.

[35] Stefano Calzavara, Claudio Lucchese, and Gabriele Tolomei. “Adversar-
ial Training of Gradient-Boosted Decision Trees”. In: Proceedings of the
28th ACM International Conference on Information and Knowledge Man-
agement, CIKM 2019, Beijing, China, November 3-7, 2019. ACM, 2019,
pp. 2429–2432. doi: 10.1145/3357384.3358149.

[36] Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei, Seyum Assefa
Abebe, and Salvatore Orlando. “Treant: training evasion-aware decision
trees”. In: Data Min. Knowl. Discov. 34.5 (2020), pp. 1390–1420. doi:
10.1007/S10618-020-00694-9.

[37] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. “Learning to
rank: from pairwise approach to listwise approach”. In: Machine Learning,
Proceedings of the Twenty-Fourth International Conference (ICML 2007),

https://doi.org/10.1109/SaTML54575.2023.00011
https://doi.org/10.1016/J.COSE.2022.102843
https://doi.org/10.1016/J.COSE.2022.102843
https://doi.org/10.1145/3576915.3623100
https://doi.org/10.1007/978-3-030-59013-0_21
https://doi.org/10.1186/S13635-021-00127-0
https://doi.org/10.1145/3357384.3358149
https://doi.org/10.1007/S10618-020-00694-9

252 BIBLIOGRAPHY

Corvallis, Oregon, USA, June 20-24, 2007. Ed. by Zoubin Ghahramani.
Vol. 227. ACM International Conference Proceeding Series. ACM, 2007,
pp. 129–136. doi: 10.1145/1273496.1273513.

[38] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay. “The in-
formation visualizer, an information workspace”. In: Conference on Human
Factors in Computing Systems, CHI 1991, New Orleans, LA, USA, April 27
- May 2, 1991, Proceedings. Ed. by Scott P. Robertson, Gary M. Olson, and
Judith S. Olson. ACM, 1991, pp. 181–186. doi: 10.1145/108844.108874.

[39] Nicholas Carlini and David A. Wagner. “Towards Evaluating the Robust-
ness of Neural Networks”. In: 2017 IEEE Symposium on Security and Pri-
vacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer
Society, 2017, pp. 39–57. doi: 10.1109/SP.2017.49.

[40] Vitor R Carvalho, Jonathan L Elsas, William W Cohen, and Jaime G Car-
bonell. “A meta-learning approach for robust rank learning”. In: SIGIR
2008 workshop on learning to rank for information retrieval. Vol. 1. 2008.

[41] Simon Caton and Christian Haas. “Fairness in Machine Learning: A Sur-
vey”. In: ACM Comput. Surv. (Aug. 2023). issn: 0360-0300. doi: 10.1145/
3616865.

[42] Olivier Chapelle and Yi Chang. “Yahoo! Learning to Rank Challenge
Overview”. In: Proceedings of the Yahoo! Learning to Rank Challenge, held
at ICML 2010, Haifa, Israel, June 25, 2010. Ed. by Olivier Chapelle, Yi
Chang, and Tie-Yan Liu. Vol. 14. JMLR Proceedings. JMLR.org, 2011,
pp. 1–24.

[43] Olivier Chapelle, Thorsten Joachims, Filip Radlinski, and Yisong Yue.
“Large-scale validation and analysis of interleaved search evaluation”. In:
ACM Transactions on Information and Systems 30.1 (2012), 6:1–6:41. doi:
10.1145/2094072.2094078.

[44] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. “Ex-
pected Reciprocal Rank for Graded Relevance”. In: Proceedings of the
18th ACM Conference on Information and Knowledge Management, CIKM
2009, Hong Kong, China, November 2-6, 2009. Ed. by David Wai-Lok Che-
ung, Il-Yeol Song, Wesley W. Chu, Xiaohua Hu, and Jimmy Lin. ACM,
2009, pp. 621–630. doi: 10.1145/1645953.1646033.

[45] Hongge Chen, Huan Zhang, Duane S. Boning, and Cho-Jui Hsieh. “Ro-
bust Decision Trees Against Adversarial Examples”. In: Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA. Ed. by Kamalika Chaudhuri and Rus-

https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/108844.108874
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1145/3616865
https://doi.org/10.1145/3616865
https://doi.org/10.1145/2094072.2094078
https://doi.org/10.1145/1645953.1646033

BIBLIOGRAPHY 253

lan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research.
PMLR, 2019, pp. 1122–1131.

[46] Hongge Chen, Huan Zhang, Si Si, Yang Li, Duane S. Boning, and Cho-
Jui Hsieh. “Robustness Verification of Tree-based Models”. In: Advances in
Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada. Ed. by Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett.
2019, pp. 12317–12328.

[47] John Chen, Vatsal Shah, and Anastasios Kyrillidis. “Negative Sampling
in Semi-Supervised learning”. In: Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event. Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020,
pp. 1704–1714.

[48] Yan Chen, Wei Wang, and Xiangliang Zhang. “Randomizing SVM Against
Adversarial Attacks Under Uncertainty”. In: Advances in Knowledge Dis-
covery and Data Mining - 22nd Pacific-Asia Conference, PAKDD 2018,
Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part III. Ed. by
Dinh Q. Phung, Vincent S. Tseng, Geoffrey I. Webb, Bao Ho, Mohadeseh
Ganji, and Lida Rashidi. Vol. 10939. Lecture Notes in Computer Science.
Springer, 2018, pp. 556–568. doi: 10.1007/978-3-319-93040-4_44.

[49] Yizheng Chen, Shiqi Wang, Yue Qin, Xiaojing Liao, Suman Jana, and David
A. Wagner. “Learning Security Classifiers with Verified Global Robustness
Properties”. In: CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, Republic of Korea, November 15
- 19, 2021. Ed. by Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine
Shi. ACM, 2021, pp. 477–494. doi: 10.1145/3460120.3484776.

[50] Nancy Chinchor. “MUC-4 evaluation metrics”. In: Proceedings of the 4th
Conference on Message Understanding, MUC 1992, McLean, Virginia,
USA, June 16-18, 1992. ACL, 1992, pp. 22–29. doi: 10.3115/1072064.
1072067.

[51] Microsoft Corporation. LightGBM Release 3.3.3.99. 2023.

[52] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”. In:
Mach. Learn. 20.3 (1995), pp. 273–297. doi: 10.1007/BF00994018.

[53] David Cossock and Tong Zhang. “Subset Ranking Using Regression”. In:
Learning Theory, 19th Annual Conference on Learning Theory, COLT
2006, Pittsburgh, PA, USA, June 22-25, 2006, Proceedings. Ed. by Gábor

https://doi.org/10.1007/978-3-319-93040-4_44
https://doi.org/10.1145/3460120.3484776
https://doi.org/10.3115/1072064.1072067
https://doi.org/10.3115/1072064.1072067
https://doi.org/10.1007/BF00994018

254 BIBLIOGRAPHY

Lugosi and Hans Ulrich Simon. Vol. 4005. Lecture Notes in Computer Sci-
ence. Springer, 2006, pp. 605–619. doi: 10.1007/11776420_44.

[54] Nilesh N. Dalvi, Pedro M. Domingos, Mausam, Sumit K. Sanghai, and
Deepak Verma. “Adversarial Classification”. In: Proceedings of the Tenth
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Seattle, Washington, USA, August 22-25, 2004. ACM, 2004,
pp. 99–108. doi: 10.1145/1014052.1014066.

[55] Hung Dang, Yue Huang, and Ee-Chien Chang. “Evading Classifiers by Mor-
phing in the Dark”. In: Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017. Ed. by Bhavani Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu. ACM, 2017, pp. 119–133. doi:
10.1145/3133956.3133978.

[56] Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore Or-
lando, Raffaele Perego, Nicola Tonellotto, and Rossano Venturini. “Fast
Ranking with Additive Ensembles of Oblivious and Non-Oblivious Re-
gression Trees”. In: ACM Trans. Inf. Syst. 35.2 (2016), 15:1–15:31. doi:
10.1145/2987380.

[57] Houtao Deng. “Interpreting tree ensembles with inTrees”. In: Int. J. Data
Sci. Anal. 7.4 (2019), pp. 277–287. doi: 10.1007/S41060-018-0144-8.

[58] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“BERT: Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding”. In: Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers). Ed. by Jill Burstein, Christy Do-
ran, and Thamar Solorio. Association for Computational Linguistics, 2019,
pp. 4171–4186. doi: 10.18653/v1/n19-1423.

[59] Fernando Diaz, Bhaskar Mitra, Michael D. Ekstrand, Asia J. Biega, and
Ben Carterette. “Evaluating Stochastic Rankings with Expected Expo-
sure”. In: CIKM ’20: The 29th ACM International Conference on Infor-
mation and Knowledge Management, Virtual Event, Ireland, October 19-
23, 2020. Ed. by Mathieu d’Aquin, Stefan Dietze, Claudia Hauff, Edward
Curry, and Philippe Cudré-Mauroux. ACM, 2020, pp. 275–284. doi: 10.
1145/3340531.3411962.

[60] Wenkui Ding, Xiubo Geng, and Xudong Zhang. “Learning to Rank from
Noisy Data”. In: ACM Trans. Intell. Syst. Technol. 7.1 (2015), 1:1–1:21.
doi: 10.1145/2576230.

https://doi.org/10.1007/11776420_44
https://doi.org/10.1145/1014052.1014066
https://doi.org/10.1145/3133956.3133978
https://doi.org/10.1145/2987380
https://doi.org/10.1007/S41060-018-0144-8
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3340531.3411962
https://doi.org/10.1145/3340531.3411962
https://doi.org/10.1145/2576230

BIBLIOGRAPHY 255

[61] Anlei Dong, Yi Chang, Zhaohui Zheng, Gilad Mishne, Jing Bai, Ruiqiang
Zhang, Karolina Buchner, Ciya Liao, and Fernando Diaz. “Towards recency
ranking in web search”. In: Proceedings of the Third International Confer-
ence on Web Search and Web Data Mining, WSDM 2010, New York, NY,
USA, February 4-6, 2010. Ed. by Brian D. Davison, Torsten Suel, Nick
Craswell, and Bing Liu. ACM, 2010, pp. 11–20. doi: 10.1145/1718487.
1718490.

[62] Pinar Donmez, Krysta M. Svore, and Christopher J. C. Burges. “On the
local optimality of LambdaRank”. In: Proceedings of the 32nd Annual In-
ternational ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR 2009, Boston, MA, USA, July 19-23, 2009. Ed.
by James Allan, Javed A. Aslam, Mark Sanderson, ChengXiang Zhai, and
Justin Zobel. ACM, 2009, pp. 460–467. doi: 10.1145/1571941.1572021.

[63] Bradley Efron and Robert Tibshirani. An Introduction to the Bootstrap.
Springer, 1993. isbn: 978-1-4899-4541-9. doi: 10 . 1007 / 978 - 1 - 4899 -
4541-9.

[64] Lei Feng, Senlin Shu, Zhuoyi Lin, Fengmao Lv, Li Li, and Bo An. “Can
Cross Entropy Loss Be Robust to Label Noise?” In: Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJ-
CAI 2020. Ed. by Christian Bessiere. ijcai.org, 2020, pp. 2206–2212. doi:
10.24963/ijcai.2020/305.

[65] R.A. Fisher. The design of experiments. 1935. Edinburgh: Oliver and Boyd,
1935.

[66] M. Forina, R. Leardi, C. Armanino, and S. Lanteri. PARVUS: An Extend-
able Package of Programs for Data Exploration. Jan. 1998. isbn: 0-444-
43012-1.

[67] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. “Model Inversion
Attacks that Exploit Confidence Information and Basic Countermeasures”.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-16, 2015. Ed. by
Indrajit Ray, Ninghui Li, and Christopher Kruegel. ACM, 2015, pp. 1322–
1333. doi: 10.1145/2810103.2813677.

[68] Yoav Freund, Raj D. Iyer, Robert E. Schapire, and Yoram Singer. “An Effi-
cient Boosting Algorithm for Combining Preferences”. In: J. Mach. Learn.
Res. 4 (2003), pp. 933–969.

[69] Jerome H. Friedman. “Greedy Function Approximation: A Gradient Boost-
ing Machine”. In: The Annals of Statistics 29.5 (2001), pp. 1189–1232. doi:
10.1214/aos/1013203451.

https://doi.org/10.1145/1718487.1718490
https://doi.org/10.1145/1718487.1718490
https://doi.org/10.1145/1571941.1572021
https://doi.org/10.1007/978-1-4899-4541-9
https://doi.org/10.1007/978-1-4899-4541-9
https://doi.org/10.24963/ijcai.2020/305
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1214/aos/1013203451

256 BIBLIOGRAPHY

[70] Jerome H. Friedman. “Stochastic Gradient Boosting”. In: Computational
Statistics & Data Analysis 38.4 (Feb. 2002), pp. 367–378. issn: 0167-9473.
doi: 10.1016/S0167-9473(01)00065-2.

[71] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. “Fairness testing:
testing software for discrimination”. In: Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Pader-
born, Germany, September 4-8, 2017. Ed. by Eric Bodden, Wilhelm Schäfer,
Arie van Deursen, and Andrea Zisman. ACM, 2017, pp. 498–510. doi:
10.1145/3106237.3106277.

[72] Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan. “Approximation al-
gorithms for partial covering problems”. In: Journal of Algorithms 53.1
(2004), pp. 55–84. issn: 0196-6774. doi: doi.org/10.1016/j.jalgor.
2004.04.002.

[73] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov,
Swarat Chaudhuri, and Martin T. Vechev. “AI2: Safety and Robustness
Certification of Neural Networks with Abstract Interpretation”. In: 2018
IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23
May 2018, San Francisco, California, USA. IEEE Computer Society, 2018,
pp. 3–18. doi: 10.1109/SP.2018.00058.

[74] Anthony Goldbloom and Ben Hamner. Heritage Health Prize. 2011.

[75] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining
and Harnessing Adversarial Examples”. In: 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-
9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann
LeCun. 2015.

[76] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C. Courville,
and Yoshua Bengio. “Maxout Networks”. In: Proceedings of the 30th Inter-
national Conference on Machine Learning, ICML 2013, Atlanta, GA, USA,
16-21 June 2013. Vol. 28. JMLR Workshop and Conference Proceedings.
JMLR.org, 2013, pp. 1319–1327.

[77] Gregory Goren, Oren Kurland, Moshe Tennenholtz, and Fiana Raiber.
“Ranking Robustness Under Adversarial Document Manipulations”. In:
The 41st International ACM SIGIR Conference on Research & Develop-
ment in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July
08-12, 2018. Ed. by Kevyn Collins-Thompson, Qiaozhu Mei, Brian D.
Davison, Yiqun Liu, and Emine Yilmaz. ACM, 2018, pp. 395–404. doi:
10.1145/3209978.3210012.

https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1145/3106237.3106277
https://doi.org/doi.org/10.1016/j.jalgor.2004.04.002
https://doi.org/doi.org/10.1016/j.jalgor.2004.04.002
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1145/3209978.3210012

BIBLIOGRAPHY 257

[78] Shixiang Gu and Luca Rigazio. “Towards Deep Neural Network Architec-
tures Robust to Adversarial Examples”. In: 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Workshop Track Proceedings. Ed. by Yoshua Bengio and Yann Le-
Cun. 2015.

[79] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor
W. Tsang, and Masashi Sugiyama. “Co-teaching: Robust training of deep
neural networks with extremely noisy labels”. In: Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. Ed. by Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kris-
ten Grauman, Nicolò Cesa-Bianchi, and Roman Garnett. 2018, pp. 8536–
8546.

[80] Ralf Herbrich, Thore Graepel, and Klause Obermayer. “Large Margin Rank
Boundaries for Ordinal Regression”. In: Advances in Large Margin Classi-
fiers. The MIT Press, 1999. Chap. 7, pp. 115–132.

[81] Tin Kam Ho. “The Random Subspace Method for Constructing Decision
Forests”. In: IEEE Trans. Pattern Anal. Mach. Intell. 20.8 (1998), pp. 832–
844. doi: 10.1109/34.709601.

[82] Hans Hofmann. Statlog (German Credit Data). Nov. 1994. doi: 10.24432/
C5NC77.

[83] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. “A probabilis-
tic method for inferring preferences from clicks”. In: Proceedings of the
20th ACM Conference on Information and Knowledge Management, CIKM
2011, Glasgow, United Kingdom, October 24-28, 2011. Ed. by Craig Mac-
donald, Iadh Ounis, and Ian Ruthven. ACM, 2011, pp. 249–258. doi: 10.
1145/2063576.2063618.

[84] Mark Hopkins, Erik Reeber, George Forman, and Jaap Suermondt. Spam-
base. June 1999. doi: 10.24432/C53G6X.

[85] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I. P. Rubinstein,
and J. D. Tygar. “Adversarial Machine Learning”. In: Proceedings of the
4th ACM Workshop on Security and Artificial Intelligence, AISec 2011,
Chicago, IL, USA, October 21, 2011. ACM, 2011, pp. 43–58. doi: 10 .
1145/2046684.2046692.

[86] Muhammad Ibrahim and Mark James Carman. “Undersampling Tech-
niques to Re-balance Training Data for Large Scale Learning-to-Rank”.
In: Information Retrieval Technology - 10th Asia Information Retrieval So-
cieties Conference, AIRS 2014, Kuching, Malaysia, December 3-5, 2014.

https://doi.org/10.1109/34.709601
https://doi.org/10.24432/C5NC77
https://doi.org/10.24432/C5NC77
https://doi.org/10.1145/2063576.2063618
https://doi.org/10.1145/2063576.2063618
https://doi.org/10.24432/C53G6X
https://doi.org/10.1145/2046684.2046692
https://doi.org/10.1145/2046684.2046692

258 BIBLIOGRAPHY

Proceedings. Ed. by Azizah Jaafar, Nazlena Mohamad Ali, Shahrul Azman
Mohd. Noah, Alan F. Smeaton, Peter Bruza, Zainab Abu Bakar, Nursuriati
Jamil, and Tengku Mohd Tengku Sembok. Vol. 8870. Lecture Notes in Com-
puter Science. Springer, 2014, pp. 444–457. doi: 10.1007/978-3-319-
12844-3_38.

[87] Alexey Ignatiev, Martin C. Cooper, Mohamed Siala, Emmanuel Hebrard,
and João Marques-Silva. “Towards Formal Fairness in Machine Learning”.
In: Principles and Practice of Constraint Programming - 26th International
Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020,
Proceedings. Ed. by Helmut Simonis. Vol. 12333. Lecture Notes in Computer
Science. Springer, 2020, pp. 846–867. doi: 10.1007/978-3-030-58475-
7_49.

[88] Kalervo Järvelin and Jaana Kekäläinen. “Cumulated gain-based evalua-
tion of IR techniques”. In: ACM Transactions on Information Systems 20.4
(2002), pp. 422–446. doi: 10.1145/582415.582418.

[89] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. “Unbiased
Learning-to-Rank with Biased Feedback”. In: Proceedings of the Tenth
ACM International Conference on Web Search and Data Mining, WSDM
2017, Cambridge, United Kingdom, February 6-10, 2017. Ed. by Maarten
de Rijke, Milad Shokouhi, Andrew Tomkins, and Min Zhang. ACM, 2017,
pp. 781–789. doi: 10.1145/3018661.3018699.

[90] George H. John. “Robust Decision Trees: Removing Outliers from
Databases”. In: Proceedings of the First International Conference on
Knowledge Discovery and Data Mining (KDD-95), Montreal, Canada, Au-
gust 20-21, 1995. Ed. by Usama M. Fayyad and Ramasamy Uthurusamy.
AAAI Press, 1995, pp. 174–179.

[91] Philips George John, Deepak Vijaykeerthy, and Diptikalyan Saha. “Veri-
fying Individual Fairness in Machine Learning Models”. In: Proceedings of
the Thirty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI
2020, virtual online, August 3-6, 2020. Ed. by Ryan P. Adams and Vibhav
Gogate. Vol. 124. Proceedings of Machine Learning Research. AUAI Press,
2020, pp. 749–758.

[92] Alex Kantchelian, J. D. Tygar, and Anthony D. Joseph. “Evasion and Hard-
ening of Tree Ensemble Classifiers”. In: Proceedings of the 33nd Interna-
tional Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016. Ed. by Maria-Florina Balcan and Kilian Q. Wein-
berger. Vol. 48. JMLR Workshop and Conference Proceedings. JMLR.org,
2016, pp. 2387–2396.

https://doi.org/10.1007/978-3-319-12844-3_38
https://doi.org/10.1007/978-3-319-12844-3_38
https://doi.org/10.1007/978-3-030-58475-7_49
https://doi.org/10.1007/978-3-030-58475-7_49
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/3018661.3018699

BIBLIOGRAPHY 259

[93] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong
Ma, Qiwei Ye, and Tie-Yan Liu. “LightGBM: A Highly Efficient Gradient
Boosting Decision Tree”. In: Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett. 2017, pp. 3146–3154.

[94] Haitham Khedr and Yasser Shoukry. “CertiFair: A Framework for Certified
Global Fairness of Neural Networks”. In: (2023). Ed. by Brian Williams,
Yiling Chen, and Jennifer Neville, pp. 8237–8245. doi: 10.1609/AAAI.
V37I7.25994.

[95] James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Ziwei Zhu.
“End-to-End Learning for Fair Ranking Systems”. In: WWW ’22: The
ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 - 29,
2022. Ed. by Frédérique Laforest, Raphaël Troncy, Elena Simperl, Deepak
Agarwal, Aristides Gionis, Ivan Herman, and Lionel Médini. ACM, 2022,
pp. 3520–3530. doi: 10.1145/3485447.3512247.

[96] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial Ma-
chine Learning at Scale”. In: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Confer-
ence Track Proceedings. OpenReview.net, 2017.

[97] G. Roshan Lal, Xiaotong Chen, and Varun Mithal. “TE2Rules: Extracting
Rule Lists from Tree Ensembles”. In: CoRR abs/2206.14359 (2022). doi:
10.48550/arXiv.2206.14359. arXiv: 2206.14359.

[98] Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. How We
Analyzed the COMPAS Recidivism Algorithm. 2016.

[99] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-
based learning applied to document recognition”. In: Proc. IEEE 86.11
(1998), pp. 2278–2324. doi: 10.1109/5.726791.

[100] Klas Leino, Zifan Wang, and Matt Fredrikson. “Globally-Robust Neural
Networks”. In: Proceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual Event. Ed. by Ma-
rina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning
Research. PMLR, 2021, pp. 6212–6222.

[101] Hang Li. Learning to Rank for Information Retrieval and Natural Lan-
guage Processing. Synthesis Lectures on Human Language Technologies.
Morgan & Claypool Publishers, 2011. isbn: 978-3-031-02141-1. doi: 10.
2200/S00348ED1V01Y201104HLT012.

https://doi.org/10.1609/AAAI.V37I7.25994
https://doi.org/10.1609/AAAI.V37I7.25994
https://doi.org/10.1145/3485447.3512247
https://doi.org/10.48550/arXiv.2206.14359
https://arxiv.org/abs/2206.14359
https://doi.org/10.1109/5.726791
https://doi.org/10.2200/S00348ED1V01Y201104HLT012
https://doi.org/10.2200/S00348ED1V01Y201104HLT012

260 BIBLIOGRAPHY

[102] Ping Li, Christopher J. C. Burges, and Qiang Wu. “McRank: Learning to
Rank Using Multiple Classification and Gradient Boosting”. In: Advances
in Neural Information Processing Systems 20, Proceedings of the Twenty-
First Annual Conference on Neural Information Processing Systems, Van-
couver, British Columbia, Canada, December 3-6, 2007. Ed. by John C.
Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis. Curran Asso-
ciates, Inc., 2007, pp. 897–904.

[103] Jimmy Lin, Rodrigo Frassetto Nogueira, and Andrew Yates. Pretrained
Transformers for Text Ranking: BERT and Beyond. Synthesis Lectures on
Human Language Technologies. Morgan & Claypool Publishers, 2021. isbn:
978-3-031-01053-8. doi: 10.2200/S01123ED1V01Y202108HLT053.

[104] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation Forest”. In:
Proceedings of the 8th IEEE International Conference on Data Mining
(ICDM 2008), December 15-19, 2008, Pisa, Italy. IEEE Computer Soci-
ety, 2008, pp. 413–422. doi: 10.1109/ICDM.2008.17.

[105] Jiawei Liu, Yangyang Kang, Di Tang, Kaisong Song, Changlong Sun, Xi-
aofeng Wang, Wei Lu, and Xiaozhong Liu. “Order-Disorder: Imitation Ad-
versarial Attacks for Black-box Neural Ranking Models”. In: Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022. Ed.
by Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi. ACM, 2022,
pp. 2025–2039. doi: 10.1145/3548606.3560683.

[106] “Mean Average Precision”. In: Encyclopedia of Database Systems. Ed. by
Ling Liu and M. Tamer Özsu. Springer US, 2009, p. 1703. doi: 10.1007/
978-0-387-39940-9_3032.

[107] Yang Liu and Hongyi Guo. “Peer Loss Functions: Learning from Noisy
Labels without Knowing Noise Rates”. In: Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event. Vol. 119. Proceedings of Machine Learning Research. PMLR,
2020, pp. 6226–6236.

[108] Yu-An Liu, Ruqing Zhang, Jiafeng Guo, Maarten de Rijke, Wei Chen, Yix-
ing Fan, and Xueqi Cheng. “Topic-oriented Adversarial Attacks against
Black-box Neural Ranking Models”. In: Proceedings of the 46th Interna-
tional ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR 2023, Taipei, Taiwan, July 23-27, 2023. Ed. by
Hsin-Hsi Chen, Wei-Jou (Edward) Duh, Hen-Hsen Huang, Makoto P. Kato,
Josiane Mothe, and Barbara Poblete. ACM, 2023, pp. 1700–1709. doi:
10.1145/3539618.3591777.

https://doi.org/10.2200/S01123ED1V01Y202108HLT053
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1145/3548606.3560683
https://doi.org/10.1007/978-0-387-39940-9_3032
https://doi.org/10.1007/978-0-387-39940-9_3032
https://doi.org/10.1145/3539618.3591777

BIBLIOGRAPHY 261

[109] Daniel Lowd and Christopher Meek. “Adversarial learning”. In: Proceedings
of the Eleventh ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, Chicago, Illinois, USA, August 21-24, 2005. Ed.
by Robert Grossman, Roberto J. Bayardo, and Kristin P. Bennett. ACM,
2005, pp. 641–647. doi: 10.1145/1081870.1081950.

[110] Claudio Lucchese, Federico Marcuzzi, and Salvatore Orlando. “On the Ef-
fect of Low-Ranked Documents: A New Sampling Function for Selective
Gradient Boosting”. In: Proceedings of the 38th ACM/SIGAPP Sympo-
sium on Applied Computing, SAC 2023, Tallinn, Estonia, March 27-31,
2023. Ed. by Jiman Hong, Maart Lanperne, Juw Won Park, Tomás Cerný,
and Hossain Shahriar. ACM, 2023, pp. 646–652. doi: 10.1145/3555776.
3577597.

[111] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele
Perego, Fabrizio Silvestri, and Salvatore Trani. “Post-Learning Optimiza-
tion of Tree Ensembles for Efficient Ranking”. In: Proceedings of the 39th
International ACM SIGIR conference on Research and Development in In-
formation Retrieval, SIGIR 2016, Pisa, Italy, July 17-21, 2016. Ed. by
Raffaele Perego, Fabrizio Sebastiani, Javed A. Aslam, Ian Ruthven, and
Justin Zobel. ACM, 2016, pp. 949–952. doi: 10.1145/2911451.2914763.

[112] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele
Perego, Nicola Tonellotto, and Rossano Venturini. “QuickScorer: Efficient
Traversal of Large Ensembles of Decision Trees”. In: Machine Learning and
Knowledge Discovery in Databases - European Conference, ECML PKDD
2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part III.
Ed. by Yasemin Altun, Kamalika Das, Taneli Mielikäinen, Donato Malerba,
Jerzy Stefanowski, Jesse Read, Marinka Zitnik, Michelangelo Ceci, and Saso
Dzeroski. Vol. 10536. Lecture Notes in Computer Science. Springer, 2017,
pp. 383–387. doi: 10.1007/978-3-319-71273-4_36.

[113] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele
Perego, and Salvatore Trani. “X-DART: Blending Dropout and Pruning
for Efficient Learning to Rank”. In: Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, Shinjuku, Tokyo, Japan, August 7-11, 2017. Ed. by Noriko Kando,
Tetsuya Sakai, Hideo Joho, Hang Li, Arjen P. de Vries, and Ryen W. White.
ACM, 2017, pp. 1077–1080. doi: 10.1145/3077136.3080725.

[114] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele
Perego, and Salvatore Trani. “Query-level Early Exit for Additive Learning-
to-Rank Ensembles”. In: (2020). Ed. by Jimmy X. Huang, Yi Chang, Xueqi

https://doi.org/10.1145/1081870.1081950
https://doi.org/10.1145/3555776.3577597
https://doi.org/10.1145/3555776.3577597
https://doi.org/10.1145/2911451.2914763
https://doi.org/10.1007/978-3-319-71273-4_36
https://doi.org/10.1145/3077136.3080725

262 BIBLIOGRAPHY

Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu,
pp. 2033–2036. doi: 10.1145/3397271.3401256.

[115] Claudio Lucchese, Franco Maria Nardini, Raffaele Perego, Salvatore Or-
lando, and Salvatore Trani. “Selective Gradient Boosting for Effective
Learning to Rank”. In: The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, SIGIR 2018, Ann Ar-
bor, MI, USA, July 08-12, 2018. Ed. by Kevyn Collins-Thompson, Qiaozhu
Mei, Brian D. Davison, Yiqun Liu, and Emine Yilmaz. ACM, 2018, pp. 155–
164. doi: 10.1145/3209978.3210048.

[116] R. Duncan Luce. Individual Choice Behavior: A Theoretical analysis. New
York, NY, USA: Wiley, 1959.

[117] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. “Towards Deep Learning Models Resistant to
Adversarial Attacks”. In: 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018.

[118] Karima Makhlouf, Sami Zhioua, and Catuscia Palamidessi. “Machine learn-
ing fairness notions: Bridging the gap with real-world applications”. In:
Inf. Process. Manag. 58.5 (2021), p. 102642. doi: 10.1016/j.ipm.2021.
102642.

[119] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to information retrieval. Cambridge University Press, 2008. isbn:
978-0-521-86571-5. doi: 10.1017/CBO9780511809071.

[120] Federico Marcuzzi. Robust Tree Ensemble against Adversarial Examples.
Università Ca’ Foscari Venezia, 2020.

[121] Federico Marcuzzi, Claudio Lucchese, and Salvatore Orlando. “Filtering
out Outliers in Learning to Rank”. In: ICTIR ’22: The 2022 ACM SIGIR
International Conference on the Theory of Information Retrieval, Madrid,
Spain, July 11 - 12, 2022. Ed. by Fabio Crestani, Gabriella Pasi, and Éric
Gaussier. ACM, 2022, pp. 214–222. doi: 10.1145/3539813.3545127.

[122] Federico Marcuzzi, Claudio Lucchese, and Salvatore Orlando. “Lamb-
daRank Gradients are Incoherent”. In: Proceedings of the 32nd ACM Inter-
national Conference on Information and Knowledge Management, CIKM
2023, Birmingham, United Kingdom, October 21-25, 2023. Ed. by Ingo
Frommholz, Frank Hopfgartner, Mark Lee, Michael Oakes, Mounia Lal-
mas, Min Zhang, and Rodrygo L. T. Santos. ACM, 2023, pp. 1777–1786.
doi: 10.1145/3583780.3614948.

https://doi.org/10.1145/3397271.3401256
https://doi.org/10.1145/3209978.3210048
https://doi.org/10.1016/j.ipm.2021.102642
https://doi.org/10.1016/j.ipm.2021.102642
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1145/3539813.3545127
https://doi.org/10.1145/3583780.3614948

BIBLIOGRAPHY 263

[123] Morteza Mashayekhi and Robin Gras. “Rule Extraction from Random For-
est: the RF+HC Methods”. In: Advances in Artificial Intelligence - 28th
Canadian Conference on Artificial Intelligence, Canadian AI 2015, Hali-
fax, Nova Scotia, Canada, June 2-5, 2015, Proceedings. Ed. by Denilson
Barbosa and Evangelos E. Milios. Vol. 9091. Lecture Notes in Computer
Science. Springer, 2015, pp. 223–237. doi: 10.1007/978-3-319-18356-
5_20.

[124] B.W. Matthews. “Comparison of the predicted and observed secondary
structure of T4 phage lysozyme”. In: Biochimica et Biophysica Acta (BBA)
- Protein Structure 405.2 (1975), pp. 442–451. issn: 0005-2795. doi: 10.
1016/0005-2795(75)90109-9.

[125] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and
Aram Galstyan. “A Survey on Bias and Fairness in Machine Learning”.
In: ACM Computing Surveys 54.6 (2022), 115:1–115:35. doi: 10.1145/
3457607.

[126] Marco Melis, Ambra Demontis, Battista Biggio, Gavin Brown, Giorgio
Fumera, and Fabio Roli. “Is Deep Learning Safe for Robot Vision? Ad-
versarial Examples Against the iCub Humanoid”. In: 2017 IEEE Interna-
tional Conference on Computer Vision Workshops, ICCV Workshops 2017,
Venice, Italy, October 22-29, 2017. IEEE Computer Society, 2017, pp. 751–
759. doi: 10.1109/ICCVW.2017.94.

[127] Alistair Moffat and Justin Zobel. “Rank-biased precision for measurement
of retrieval effectiveness”. In: ACM Trans. Inf. Syst. 27.1 (2008), 2:1–2:27.
doi: 10.1145/1416950.1416952.

[128] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.
“DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks”.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer So-
ciety, 2016, pp. 2574–2582. doi: 10.1109/CVPR.2016.282.

[129] Brad A. Myers. “The importance of percent-done progress indicators for
computer-human interfaces”. In: (1985). Ed. by Lorraine Borman and Raoul
N. Smith, pp. 11–17. doi: 10.1145/317456.317459.

[130] Blaine Nelson, Benjamin I. P. Rubinstein, Ling Huang, Anthony D. Joseph,
Shing-hon Lau, Steven J. Lee, Satish Rao, Anthony Tran, and J. Doug Ty-
gar. “Near-Optimal Evasion of Convex-Inducing Classifiers”. In: Proceed-
ings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May
13-15, 2010. Ed. by Yee Whye Teh and D. Mike Titterington. Vol. 9. JMLR
Proceedings. JMLR.org, 2010, pp. 549–556.

https://doi.org/10.1007/978-3-319-18356-5_20
https://doi.org/10.1007/978-3-319-18356-5_20
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1109/ICCVW.2017.94
https://doi.org/10.1145/1416950.1416952
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1145/317456.317459

264 BIBLIOGRAPHY

[131] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural networks
are easily fooled: High confidence predictions for unrecognizable images”.
In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer Society, 2015,
pp. 427–436. doi: 10.1109/CVPR.2015.7298640.

[132] Duc Tam Nguyen, Chaithanya Kumar Mummadi, Thi-Phuong-Nhung Ngo,
Thi Hoai Phuong Nguyen, Laura Beggel, and Thomas Brox. “SELF: Learn-
ing to Filter Noisy Labels with Self-Ensembling”. In: 8th International Con-
ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

[133] Ziad Obermeyer and Sendhil Mullainathan. “Dissecting Racial Bias in an
Algorithm that Guides Health Decisions for 70 Million People”. In: Proceed-
ings of the Conference on Fairness, Accountability, and Transparency, FAT*
2019, Atlanta, GA, USA, January 29-31, 2019. Ed. by danah boyd and
Jamie H. Morgenstern. ACM, 2019, p. 89. doi: 10.1145/3287560.3287593.

[134] Luca Oneto and Silvia Chiappa. “Fairness in Machine Learning”. In: Re-
cent Trends in Learning From Data: Tutorials from the INNS Big Data and
Deep Learning Conference (INNSBDDL2019). Ed. by Luca Oneto, Nicolò
Navarin, Alessandro Sperduti, and Davide Anguita. Cham: Springer In-
ternational Publishing, 2020, pp. 155–196. isbn: 978-3-030-43883-8. doi:
10.1007/978-3-030-43883-8_7.

[135] Harrie Oosterhuis. “Computationally Efficient Optimization of Plackett-
Luce Ranking Models for Relevance and Fairness”. In: SIGIR ’21: The
44th International ACM SIGIR Conference on Research and Development
in Information Retrieval, Virtual Event, Canada, July 11-15, 2021. Ed. by
Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones,
and Tetsuya Sakai. ACM, 2021, pp. 1023–1032. doi: 10.1145/3404835.
3462830.

[136] Harrie Oosterhuis. “Learning-to-Rank at the Speed of Sampling: Plackett-
Luce Gradient Estimation with Minimal Computational Complexity”.
In: (2022). Ed. by Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben
Carterette, J. Shane Culpepper, and Gabriella Kazai, pp. 2266–2271. doi:
10.1145/3477495.3531842.

[137] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha,
Z. Berkay Celik, and Ananthram Swami. “Practical Black-Box Attacks
against Machine Learning”. In: Proceedings of the 2017 ACM on Asia Con-
ference on Computer and Communications Security, AsiaCCS 2017, Abu
Dhabi, United Arab Emirates, April 2-6, 2017. Ed. by Ramesh Karri, Ozgur

https://doi.org/10.1109/CVPR.2015.7298640
https://doi.org/10.1145/3287560.3287593
https://doi.org/10.1007/978-3-030-43883-8_7
https://doi.org/10.1145/3404835.3462830
https://doi.org/10.1145/3404835.3462830
https://doi.org/10.1145/3477495.3531842

BIBLIOGRAPHY 265

Sinanoglu, Ahmad-Reza Sadeghi, and Xun Yi. ACM, 2017, pp. 506–519.
doi: 10.1145/3052973.3053009.

[138] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson,
Z. Berkay Celik, and Ananthram Swami. “The Limitations of Deep Learn-
ing in Adversarial Settings”. In: IEEE European Symposium on Security
and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016.
IEEE, 2016, pp. 372–387. doi: 10.1109/EUROSP.2016.36.

[139] Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Anan-
thram Swami. “Distillation as a Defense to Adversarial Perturbations
Against Deep Neural Networks”. In: IEEE Symposium on Security and
Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016. IEEE Computer
Society, 2016, pp. 582–597. doi: 10.1109/SP.2016.41.

[140] R. L. Plackett. “The Analysis of Permutations”. In: Journal of the Royal
Statistical Society Series C 24.2 (June 1975), pp. 193–202. doi: 10.2307/
2346567.

[141] Tao Qin and Tie-Yan Liu. “Introducing LETOR 4.0 Datasets”. In: CoRR
abs/1306.2597 (2013).

[142] Tao Qin, Tie-Yan Liu, and Hang Li. “A general approximation framework
for direct optimization of information retrieval measures”. In: Inf. Retr.
13.4 (2010), pp. 375–397. doi: 10.1007/s10791-009-9124-x.

[143] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993. isbn: 1-55860-238-0.

[144] Francesco Ranzato, Caterina Urban, and Marco Zanella. “Fairness-Aware
Training of Decision Trees by Abstract Interpretation”. In: CIKM ’21: The
30th ACM International Conference on Information and Knowledge Man-
agement, Virtual Event, Queensland, Australia, November 1 - 5, 2021. Ed.
by Gianluca Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and
Hanghang Tong. ACM, 2021, pp. 1508–1517. doi: 10 . 1145 / 3459637 .
3482342.

[145] Francesco Ranzato and Marco Zanella. “Abstract Interpretation of Deci-
sion Tree Ensemble Classifiers”. In: The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Appli-
cations of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020. AAAI Press, 2020, pp. 5478–
5486. doi: 10.1609/AAAI.V34I04.5998.

https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1109/EUROSP.2016.36
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.2307/2346567
https://doi.org/10.2307/2346567
https://doi.org/10.1007/s10791-009-9124-x
https://doi.org/10.1145/3459637.3482342
https://doi.org/10.1145/3459637.3482342
https://doi.org/10.1609/AAAI.V34I04.5998

266 BIBLIOGRAPHY

[146] Francesco Ranzato and Marco Zanella. “Abstract Interpretation of Deci-
sion Tree Ensemble Classifiers”. In: The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Appli-
cations of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020. AAAI Press, 2020, pp. 5478–
5486. doi: 10.1609/AAAI.V34I04.5998.

[147] Francesco Ranzato and Marco Zanella. “Genetic adversarial training of
decision trees”. In: GECCO ’21: Genetic and Evolutionary Computation
Conference, Lille, France, July 10-14, 2021. Ed. by Francisco Chicano and
Krzysztof Krawiec. ACM, 2021, pp. 358–367. doi: 10.1145/3449639.
3459286.

[148] Scott E. Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Du-
mitru Erhan, and Andrew Rabinovich. “Training Deep Neural Networks
on Noisy Labels with Bootstrapping”. In: 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-
9, 2015, Workshop Track Proceedings. Ed. by Yoshua Bengio and Yann
LeCun. 2015.

[149] Stephen E. Robertson and Steve Walker. “Some Simple Effective Approx-
imations to the 2-Poisson Model for Probabilistic Weighted Retrieval”. In:
Proceedings of the 17th Annual International ACM-SIGIR Conference on
Research and Development in Information Retrieval. Dublin, Ireland, 3-6
July 1994 (Special Issue of the SIGIR Forum). Ed. by W. Bruce Croft and
C. J. van Rijsbergen. ACM/Springer, 1994, pp. 232–241. doi: 10.1007/
978-1-4471-2099-5_24.

[150] Anian Ruoss, Mislav Balunovic, Marc Fischer, and Martin T. Vechev.
“Learning Certified Individually Fair Representations”. In: Advances in
Neural Information Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin. 2020.

[151] Gerard Salton and Michael McGill. Introduction to Modern Information
Retrieval. McGraw-Hill Book Company, 1984. isbn: 0-07-054484-0.

[152] Candice Schumann, Jeffrey S. Foster, Nicholas Mattei, and John P. Dick-
erson. “We Need Fairness and Explainability in Algorithmic Hiring”. In:
Proceedings of the 19th International Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’20, Auckland, New Zealand, May 9-13,
2020. Ed. by Amal El Fallah Seghrouchni, Gita Sukthankar, Bo An, and Neil

https://doi.org/10.1609/AAAI.V34I04.5998
https://doi.org/10.1145/3449639.3459286
https://doi.org/10.1145/3449639.3459286
https://doi.org/10.1007/978-1-4471-2099-5_24
https://doi.org/10.1007/978-1-4471-2099-5_24

BIBLIOGRAPHY 267

Yorke-Smith. International Foundation for Autonomous Agents and Multi-
agent Systems, 2020, pp. 1716–1720. doi: 10.5555/3398761.3398960.

[153] Amnon Shashua and Anat Levin. “Ranking with Large Margin Principle:
Two Approaches”. In: (2002). Ed. by Suzanna Becker, Sebastian Thrun,
and Klaus Obermayer, pp. 937–944.

[154] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann Le-
Cun. 2015.

[155] Ashudeep Singh and Thorsten Joachims. “Policy Learning for Fairness in
Ranking”. In: Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada. Ed. by Hanna M.Wal-
lach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett. 2019, pp. 5427–5437.

[156] Jack Smith, J. Everhart, W. Dickson, W. Knowler, and Richard Johannes.
“Using the ADAP Learning Algorithm to Forcast the Onset of Diabetes
Mellitus”. In: Proceedings - Annual Symposium on Computer Applications
in Medical Care 10 (Nov. 1988).

[157] Nedim Srndic and Pavel Laskov. “Practical Evasion of a Learning-Based
Classifier: A Case Study”. In: 2014 IEEE Symposium on Security and Pri-
vacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. IEEE Computer
Society, 2014, pp. 197–211. doi: 10.1109/SP.2014.20.

[158] W. N. Street, W. H. Wolberg, and O. L. Mangasarian. “Nuclear feature
extraction for breast tumor diagnosis”. In: Biomedical Image Processing
and Biomedical Visualization. Ed. by Raj S. Acharya and Dmitry B. Gold-
gof. Vol. 1905. Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series. July 1993, pp. 861–870. doi: 10.1117/12.148698.

[159] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. “One Pixel
Attack for Fooling Deep Neural Networks”. In: IEEE Trans. Evol. Comput.
23.5 (2019), pp. 828–841. doi: 10.1109/TEVC.2019.2890858.

[160] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian J. Goodfellow, and Rob Fergus. “Intriguing properties
of neural networks”. In: 2nd International Conference on Learning Repre-
sentations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2014.

https://doi.org/10.5555/3398761.3398960
https://doi.org/10.1109/SP.2014.20
https://doi.org/10.1117/12.148698
https://doi.org/10.1109/TEVC.2019.2890858

268 BIBLIOGRAPHY

[161] Michael J. Taylor, John Guiver, Stephen Robertson, and Tom Minka. “Sof-
tRank: optimizing non-smooth rank metrics”. In: Proceedings of the Inter-
national Conference on Web Search and Web Data Mining, WSDM 2008,
Palo Alto, California, USA, February 11-12, 2008. Ed. by Marc Najork,
Andrei Z. Broder, and Soumen Chakrabarti. ACM, 2008, pp. 77–86. doi:
10.1145/1341531.1341544.

[162] Gabriele Tolomei, Fabrizio Silvestri, Andrew Haines, and Mounia Lalmas.
“Interpretable Predictions of Tree-based Ensembles via Actionable Feature
Tweaking”. In: Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Halifax, NS, Canada,
August 13 - 17, 2017. ACM, 2017, pp. 465–474. doi: 10.1145/3097983.
3098039.

[163] John Törnblom and Simin Nadjm-Tehrani. “An Abstraction-Refinement
Approach to Formal Verification of Tree Ensembles”. In: Computer Safety,
Reliability, and Security - SAFECOMP 2019 Workshops, ASSURE, DEC-
SoS, SASSUR, STRIVE, and WAISE, Turku, Finland, September 10, 2019,
Proceedings. Ed. by Alexander B. Romanovsky, Elena Troubitsyna, Ilir
Gashi, Erwin Schoitsch, and Friedemann Bitsch. Vol. 11699. Lecture Notes
in Computer Science. Springer, 2019, pp. 301–313. doi: 10.1007/978-3-
030-26250-1_24.

[164] John Törnblom and Simin Nadjm-Tehrani. “Formal verification of input-
output mappings of tree ensembles”. In: Science of Computer Programming
194 (2020), p. 102450. doi: 10.1016/j.scico.2020.102450.

[165] Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. “Automated
directed fairness testing”. In: Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering, ASE 2018, Mont-
pellier, France, September 3-7, 2018. Ed. by Marianne Huchard, Chris-
tian Kästner, and Gordon Fraser. ACM, 2018, pp. 98–108. doi: 10.1145/
3238147.3238165.

[166] Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang.
“Perfectly parallel fairness certification of neural networks”. In: Proc. ACM
Program. Lang. 4.OOPSLA (2020), 185:1–185:30. doi: 10.1145/3428253.

[167] Andrew V. Uzilov, Joshua M. Keegan, and David H. Mathews. “Detection
of non-coding RNAs on the basis of predicted secondary structure formation
free energy change”. In: BMC Bioinform. 7 (2006), p. 173. doi: 10.1186/
1471-2105-7-173.

https://doi.org/10.1145/1341531.1341544
https://doi.org/10.1145/3097983.3098039
https://doi.org/10.1145/3097983.3098039
https://doi.org/10.1007/978-3-030-26250-1_24
https://doi.org/10.1007/978-3-030-26250-1_24
https://doi.org/10.1016/j.scico.2020.102450
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1145/3428253
https://doi.org/10.1186/1471-2105-7-173
https://doi.org/10.1186/1471-2105-7-173

BIBLIOGRAPHY 269

[168] Vladimir Vapnik. “Principles of Risk Minimization for Learning Theory”.
In: Advances in Neural Information Processing Systems 4, [NIPS Confer-
ence, Denver, Colorado, USA, December 2-5, 1991]. Morgan Kaufmann,
1991, pp. 831–838.

[169] Sahil Verma and Julia Rubin. “Fairness definitions explained”. In: Proceed-
ings of the International Workshop on Software Fairness, FairWare@ICSE
2018, Gothenburg, Sweden, May 29, 2018. Ed. by Yuriy Brun, Brittany
Johnson, and Alexandra Meliou. ACM, 2018, pp. 1–7. doi: 10 . 1145 /

3194770.3194776.

[170] Daniël Vos and Sicco Verwer. “Efficient Training of Robust Decision Trees
Against Adversarial Examples”. In: Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of
Machine Learning Research. PMLR, 2021, pp. 10586–10595.

[171] Peifeng Wang, Shuangyin Li, and Rong Pan. “Incorporating GAN for Neg-
ative Sampling in Knowledge Representation Learning”. In: Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial In-
telligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018.
Ed. by Sheila A. McIlraith and Kilian Q. Weinberger. AAAI Press, 2018,
pp. 2005–2012. doi: 10.1609/aaai.v32i1.11536.

[172] Serena Lutong Wang, Maya R. Gupta, and Seungil You. “Quit When You
Can: Efficient Evaluation of Ensembles by Optimized Ordering”. In: ACM
J. Emerg. Technol. Comput. Syst. 17.4 (2021), 55:1–55:20. doi: 10.1145/
3451209.

[173] Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc
Najork. “The LambdaLoss Framework for Ranking Metric Optimization”.
In: Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, CIKM 2018, Torino, Italy, October 22-26,
2018. Ed. by Alfredo Cuzzocrea, James Allan, Norman W. Paton, Di-
vesh Srivastava, Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki,
K. Selçuk Candan, Alexandros Labrinidis, Assaf Schuster, and Haixun
Wang. ACM, 2018, pp. 1313–1322. doi: 10.1145/3269206.3271784.

[174] Yumeng Wang, Lijun Lyu, and Avishek Anand. “BERT Rankers are Brit-
tle: A Study using Adversarial Document Perturbations”. In: ICTIR ’22:
The 2022 ACM SIGIR International Conference on the Theory of Informa-
tion Retrieval, Madrid, Spain, July 11 - 12, 2022. Ed. by Fabio Crestani,

https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1609/aaai.v32i1.11536
https://doi.org/10.1145/3451209
https://doi.org/10.1145/3451209
https://doi.org/10.1145/3269206.3271784

270 BIBLIOGRAPHY

Gabriella Pasi, and Éric Gaussier. ACM, 2022, pp. 115–120. doi: 10.1145/
3539813.3545122.

[175] Zichen Wang, Rishab Balasubramanian, Hui Yuan, Chenyu Song, Mengdi
Wang, and Huazheng Wang. “Adversarial Attacks on Online Learning to
Rank with Stochastic Click Models”. In: CoRR abs/2305.19218 (2023). doi:
10.48550/ARXIV.2305.19218. arXiv: 2305.19218.

[176] Qiang Wu, Christopher J. C. Burges, Krysta M. Svore, and Jianfeng Gao.
“Adapting boosting for information retrieval measures”. In: Inf. Retr. 13.3
(2010), pp. 254–270. doi: 10.1007/s10791-009-9112-1.

[177] Xin Wu, Qing Liu, Jiarui Qin, and Yong Yu. “PeerRank: Robust Learning
to Rank With Peer Loss Over Noisy Labels”. In: IEEE Access 10 (2022),
pp. 6830–6841. doi: 10.1109/ACCESS.2022.3142096.

[178] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. “Listwise
approach to learning to rank: theory and algorithm”. In: Machine Learning,
Proceedings of the Twenty-Fifth International Conference (ICML 2008),
Helsinki, Finland, June 5-9, 2008. Ed. by William W. Cohen, Andrew
McCallum, and Sam T. Roweis. Vol. 307. ACM International Conference
Proceeding Series. ACM, 2008, pp. 1192–1199. doi: 10.1145/1390156.
1390306.

[179] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, Wei Zeng, and Xueqi Cheng.
“Adapting Markov Decision Process for Search Result Diversification”. In:
Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August
7-11, 2017. Ed. by Noriko Kando, Tetsuya Sakai, Hideo Joho, Hang Li,
Arjen P. de Vries, and Ryen W. White. ACM, 2017, pp. 535–544. doi:
10.1145/3077136.3080775.

[180] Biao Xiang, Daxin Jiang, Jian Pei, Xiaohui Sun, Enhong Chen, and Hang
Li. “Context-aware ranking in web search”. In: Proceeding of the 33rd Inter-
national ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR 2010, Geneva, Switzerland, July 19-23, 2010. Ed.
by Fabio Crestani, Stéphane Marchand-Maillet, Hsin-Hsi Chen, Efthimis N.
Efthimiadis, and Jacques Savoy. ACM, 2010, pp. 451–458. doi: 10.1145/
1835449.1835525.

[181] Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao, Claudia Eckert, and
Fabio Roli. “Support vector machines under adversarial label contamina-
tion”. In: Neurocomputing 160 (2015), pp. 53–62. doi: 10.1016/J.NEUCOM.
2014.08.081.

https://doi.org/10.1145/3539813.3545122
https://doi.org/10.1145/3539813.3545122
https://doi.org/10.48550/ARXIV.2305.19218
https://arxiv.org/abs/2305.19218
https://doi.org/10.1007/s10791-009-9112-1
https://doi.org/10.1109/ACCESS.2022.3142096
https://doi.org/10.1145/1390156.1390306
https://doi.org/10.1145/1390156.1390306
https://doi.org/10.1145/3077136.3080775
https://doi.org/10.1145/1835449.1835525
https://doi.org/10.1145/1835449.1835525
https://doi.org/10.1016/J.NEUCOM.2014.08.081
https://doi.org/10.1016/J.NEUCOM.2014.08.081

BIBLIOGRAPHY 271

[182] Jun Xu and Hang Li. “AdaRank: a boosting algorithm for information re-
trieval”. In: SIGIR 2007: Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
Amsterdam, The Netherlands, July 23-27, 2007. Ed. by Wessel Kraaij, Ar-
jen P. de Vries, Charles L. A. Clarke, Norbert Fuhr, and Noriko Kando.
ACM, 2007, pp. 391–398. doi: 10.1145/1277741.1277809.

[183] Zhuolin Yang, Linyi Li, Xiaojun Xu, Bhavya Kailkhura, Tao Xie, and Bo Li.
“On the Certified Robustness for Ensemble Models and Beyond”. In: The
Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[184] Ting Ye, Hucheng Zhou, Will Y. Zou, Bin Gao, and Ruofei Zhang. “Rapid-
Scorer: Fast Tree Ensemble Evaluation by Maximizing Compactness in Data
Level Parallelization”. In: Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, KDD 2018,
London, UK, August 19-23, 2018. Ed. by Yike Guo and Faisal Farooq.
ACM, 2018, pp. 941–950. doi: 10.1145/3219819.3219857.

[185] Haitao Yu, Rajesh Piryani, Adam Jatowt, Ryo Inagaki, Hideo Joho, and
Kyoung-Sook Kim. “An in-depth study on adversarial learning-to-rank”.
In: Inf. Retr. J. 26.1 (2023), p. 1. doi: 10.1007/S10791-023-09419-0.

[186] Hugo Zaragoza, Nick Craswell, Michael J. Taylor, Suchi Saria, and Stephen
E. Robertson. “Microsoft Cambridge at TREC 13: Web and Hard Tracks”.
In: Proceedings of the Thirteenth Text REtrieval Conference, TREC 2004,
Gaithersburg, Maryland, USA, November 16-19, 2004. Ed. by Ellen M.
Voorhees and Lori P. Buckland. Vol. 500-261. NIST Special Publication.
National Institute of Standards and Technology (NIST), 2004.

[187] Meike Zehlike and Carlos Castillo. “Reducing Disparate Exposure in Rank-
ing: A Learning To Rank Approach”. In: WWW ’20: The Web Conference
2020, Taipei, Taiwan, April 20-24, 2020. Ed. by Yennun Huang, Irwin King,
Tie-Yan Liu, and Maarten van Steen. ACM / IW3C2, 2020, pp. 2849–2855.
doi: 10.1145/3366424.3380048.

[188] Ethan Zhang and Yi Zhang. “Average Precision”. In: Encyclopedia of
Database Systems. Ed. by Ling Liu and M. Tamer Özsu. Springer US, 2009,
pp. 192–193. doi: 10.1007/978-0-387-39940-9_482.

[189] Zhilu Zhang and Mert R. Sabuncu. “Generalized Cross Entropy Loss
for Training Deep Neural Networks with Noisy Labels”. In: Advances in
Neural Information Processing Systems 31: Annual Conference on Neu-
ral Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada. Ed. by Samy Bengio, Hanna M. Wallach, Hugo

https://doi.org/10.1145/1277741.1277809
https://doi.org/10.1145/3219819.3219857
https://doi.org/10.1007/S10791-023-09419-0
https://doi.org/10.1145/3366424.3380048
https://doi.org/10.1007/978-0-387-39940-9_482

272 BIBLIOGRAPHY

Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett.
2018, pp. 8792–8802.

[190] Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms. 1st. Chap-
man & Hall/CRC, 2012. isbn: 1439830037.

Ringraziamenti

In quest’ultima parte della tesi desidero dedicare alcune parole per ringraziare le
persone che mi hanno accompagnato durante il mio dottorato di ricerca.

Innanzitutto, un doveroso ringraziamento va alla mia famiglia, ai miei amici,
ai miei colleghi e al gruppo di scacchi cafoscarino. Un ringraziamento speciale va
alla mia compagna Anna Mantovani, nonché futura moglie.

Dei ringraziamenti speciali vanno a Claudio Lucchese e Salvatore Orlando, i
quali sono stati i miei mentori durante questo percorso di dottorato. A Stefano
Calzavara con il quale ho avuto il piacere di collaborare in più occasioni. Al mio
collega e amico Lorenzo Cazzaro che in prima persona ha condiviso con me le
gioie e i dolori della ricerca. Un doveroso ringraziamento va a Nicola Miotello per
l’infinita pazienza e senza il quale sarebbe stato impossibile barcamenarsi nella
burocrazia del dottorato.

Un ringraziamento al Information Retrieval Lab dell’Università di Amsterdam
che mi ha ospitato durante il mio periodo all’estero e a tutte le persone speciali
incontrate durante gli anni del dottorato.

Infine, un ringraziamento ai revisori di questa tesi, Andrew Yates e Gabriele
Tolomei e a chiunque abbia trovato il tempo di leggerla.

Acknowlegments

In this final part of the thesis, I wish to express my gratitude to those who sup-
ported me throughout my doctoral studies.

First and foremost, I wish to express my heartfelt gratitude to my family,
friends, colleagues, and the Ca’ Foscari chess group. A special thanks goes to my
partner, Anna Mantovani, my future wife.

I want to express my special gratitude to Claudio Lucchese and Salvatore Or-
lando, my mentors, throughout this doctoral journey. I am also grateful to Stefano
Calzavara, with whom I have collaborated on multiple occasions. To my colleague
and friend Lorenzo Cazzaro, who personally shared the joys and pains of research
with me. Heartfelt thanks are due to Nicola Miotello for his infinite patience,
without whom untangling the bureaucracy encountered during the doctoral stud-
ies would have been impossible.

Thanks to the Information Retrieval Lab at the Universiteit van Amsterdam
for hosting me during my time abroad and to all the special people I met during
this journey.

Finally, I would like to thank the reviewers of this thesis, Andrew Yates and
Gabriele Tolomei, and anyone who has read it.

	Introduction
	Contributions of This Thesis
	Thesis Structure

	Basic Notions
	Machine Learning
	Supervised Learning
	Decision Trees

	Ensemble Methods
	Random Forest
	Gradient Boosted Decision Trees

	Summary

	I Effective and Efficient Ranking Algorithms
	Background and State of the Art
	Information Retrieval
	Learning to Rank
	Formal Definition
	Evaluation Metrics
	Normalized Discounted Cumulative Gain

	Learning Algorithms
	Effectiveness
	Efficiency
	Fairness

	Benchmark Datasets

	Summary

	Surrender on Outliers and Rank
	Related Work: Outliers
	Contribution 1: Consistent Outliers in LtR
	Contribution 2: SOUR Learning Algorithm
	Experimental Setup
	Baselines and Implementation

	Main Results
	Effectiveness

	In-Depth Analysis
	Hyperparameter Analysis
	Model-based vs. Data-based Outliers
	Data Removal vs. Data Augmentation
	Per Query Class Performance
	Outliers Effect on Model Weights
	Consistent vs. Frequent Outliers
	Removing vs. Exploiting Outliers
	Robustness to Outlier Frequency

	Summary
	Future Work

	On the Effect of Low-Ranked Documents
	Related Work: Sampling Strategies
	Selective Gradient Boosting
	Contribution: A New Sampling Function
	Experimental Setup
	Baselines and Implementation

	Main Results
	Effectiveness
	Efficiency

	In-Depth Analysis
	Hyperparameter Analysis
	The Impact of the Lowest Ranked Documents

	Summary
	Future Work

	LambdaRank Gradients are Incoherent
	Related Work: IR Metrics Optimisation
	LambdaRank
	Lambda Loss Framework
	Truncated Metric Optimisation

	Contribution 1: Gradient Incoherency
	On Truncated Optimisation
	On Un-truncated Optimisation

	Contribution 2: Lambda-eX
	Main Idea
	Selection Strategies

	Experimental Setup
	Baselines and Implementation

	Main Results
	Effectiveness
	Efficiency

	In-Depth Analysis
	Hyperparameter Analysis
	Incoherency Reduction

	Summary
	Future Work

	Discussion First Part

	II Robust Learning Algorithms for Classification
	Background and State of the Art
	Adversarial Machine Learning
	Attack Taxonomy
	Adversary's Model
	Adversary's Goal
	Adversary's Knowledge
	Adversary's Capability
	Adversary's Strategy

	Threat Model
	Type of Attack

	Evasion Attacks
	Formal Definition
	Binary Evasion Attacks
	Multiclass Evasion Attacks

	Common Adversary's Constraints
	Evaluation Metrics
	Accuracy
	Stability
	Robustness

	Countermeasures to Evasion Attacks
	Adversarial Robustness Enhancement
	Certified and Verifiable Model Robustness

	Benchmark Datasets

	Summary

	Feature Partitioned Forests
	Related Work: Robust Training
	Threat and Adversary's Model
	Contribution 1: Feature-Partitioned Forest
	Robust Feature Partitioning
	Robust Forest Ensembling
	Improve Model Accuracy and Robustness

	Contribution 2: Robustness Certifiers
	Brute Force Robustness Verifier
	Feature-Partitioned Forest Robustness Certifier
	Fast Robustness Lower Bound Certifier
	Exhaustive Robustness Lower Bound Certifier
	Non-Binary Classification Robustness Certifier

	Cascade Robustness Verifier

	Experimental Setup
	Baselines and Implementation

	Main Results
	Model Robustness
	Robustness Certifier
	Accuracy
	Efficiency

	In-Depth Analysis
	Hyperparameter Analysis
	Theoretical Analysis

	Summary
	Future Work

	Beyond Robustness
	Related Work: Security Verification
	Threat and Adversary's Model
	Contribution 1: The Resilience Metric
	Robustness vs. Resilience
	Resilience Verification
	Resilience vs. Global Robustness

	Contribution 2: Data-independent Stability Analysis
	Preliminaries
	Decision Tree Stability Analysis
	Forest Stability Analysis

	Experimental Setup
	Baselines and Implementation

	Main Results
	Shortcomings of Robustness
	Effectiveness of Resilience Verification

	In-Depth Analysis
	Performance Evaluation
	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2

	Contribution 3: Application in Fairness
	Unfairness Scenario
	Mapping With Adversarial Machine Learning
	Contribution: Global Fairness Verifier
	Verification Algorithm
	Synthesis Algorithm

	Main Results
	Precision of the Synthesis Algorithm
	Explainability of the Results
	Performance Evaluation

	Summary
	Future Work

	Discussion Second Part
	Conclusion

